noisegrad


Namenoisegrad JSON
Version 0.0.3 PyPI version JSON
download
home_page
SummaryA explanation enhancement method.
upload_time2023-04-09 22:02:54
maintainer
docs_urlNone
author
requires_python>=3.8
license
keywords explainable ai xai machine learning deep learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="center"><b>NoiseGrad and FusionGrad</b></h1>
<h3 align="center"><b>NoiseGrad: enhancing explanations by introducing stochasticity to model weights</b></h3>
<p align="center">
  <i>Pytorch implementation</i>
</p>

--------------

Pytorch implementation for **"NoiseGrad: enhancing explanations by introducing stochasticity to model weights"**. The paper introduces two novel methods `NoiseGrad` and `FusionGrad` which both improves attribution-based explanations by introducing stochasticity to the model parameters. See arXiv preprint: https://arxiv.org/abs/2106.10185.

![](https://raw.githubusercontent.com/understandable-machine-intelligence-lab/NoiseGrad/master/samples/resulting_explanation.png)

## Cite this paper

To cite this paper use following Bibtex annotation:

	@misc{bykov2021noisegrad,
	      title={NoiseGrad: enhancing explanations by introducing stochasticity to model weights},
	      author={Kirill Bykov and Anna Hedström and Shinichi Nakajima and Marina M. -C. Höhne},
	      year={2021},
	      eprint={2106.10185},
	      archivePrefix={arXiv},
	      primaryClass={cs.LG}}

## Installation

```shell
pip install noisegrad
```

All experiments were conducted with Python 3.6.9.

## Minimal Example, for more detailed ones, please refer to `examples/`
```python
from noisegrad import NoiseGrad, NoiseGradConfig, NoiseGradPlusPlus, NoiseGradPlusPlusConfig
from noisegrad.explainers import intgrad_explainer

# Initialize NoiseGrad: enhance any explanation function!
noisegrad = NoiseGrad(NoiseGradConfig(n=5))

# Initialize NoiseGrad++: enhance any explanation function!
noisegradp = NoiseGradPlusPlus(NoiseGradPlusPlusConfig(n=5, m=5))

# Get baseline explanation.
expl_base = intgrad_explainer(model, x, y)

# Get NoiseGrad explanation.
expl_ng = noisegrad.enhance_explanation(model, x, y, intgrad_explainer)

# Get NoiseGrad++ explanation.
expl_ngp = noisegradp.enhance_explanation(model, x, y, intgrad_explainer)
```




            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "noisegrad",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Kirill Bykov <kirill.bykov@campus.tu-berlin.de>, Anna Hedstr\u00f6m <anna.hedstroem@tu-berlin.de>, Artem Sereda <artem.sereda@campus.tu-berlin.de>",
    "keywords": "explainable ai,xai,machine learning,deep learning",
    "author": "",
    "author_email": "Kirill Bykov <kirill.bykov@campus.tu-berlin.de>, Anna Hedstr\u00f6m <anna.hedstroem@tu-berlin.de>, Shinichi Nakajima <nakajima@tu-berlin.de>, \"Marina M.-C. H\u00f6hne\" <marina.hoehne@tu-berlin.de>, Artem Sereda <artem.sereda@campus.tu-berlin.de>",
    "download_url": "https://files.pythonhosted.org/packages/93/70/e7a96233f95b61fad6da04825e19e7b66caf383f258badc71cb1c05a84f4/noisegrad-0.0.3.tar.gz",
    "platform": null,
    "description": "<h1 align=\"center\"><b>NoiseGrad and FusionGrad</b></h1>\n<h3 align=\"center\"><b>NoiseGrad: enhancing explanations by introducing stochasticity to model weights</b></h3>\n<p align=\"center\">\n  <i>Pytorch implementation</i>\n</p>\n\n--------------\n\nPytorch implementation for **\"NoiseGrad: enhancing explanations by introducing stochasticity to model weights\"**. The paper introduces two novel methods `NoiseGrad` and `FusionGrad` which both improves attribution-based explanations by introducing stochasticity to the model parameters. See arXiv preprint: https://arxiv.org/abs/2106.10185.\n\n![](https://raw.githubusercontent.com/understandable-machine-intelligence-lab/NoiseGrad/master/samples/resulting_explanation.png)\n\n## Cite this paper\n\nTo cite this paper use following Bibtex annotation:\n\n\t@misc{bykov2021noisegrad,\n\t      title={NoiseGrad: enhancing explanations by introducing stochasticity to model weights},\n\t      author={Kirill Bykov and Anna Hedstr\u00f6m and Shinichi Nakajima and Marina M. -C. H\u00f6hne},\n\t      year={2021},\n\t      eprint={2106.10185},\n\t      archivePrefix={arXiv},\n\t      primaryClass={cs.LG}}\n\n## Installation\n\n```shell\npip install noisegrad\n```\n\nAll experiments were conducted with Python 3.6.9.\n\n## Minimal Example, for more detailed ones, please refer to `examples/`\n```python\nfrom noisegrad import NoiseGrad, NoiseGradConfig, NoiseGradPlusPlus, NoiseGradPlusPlusConfig\nfrom noisegrad.explainers import intgrad_explainer\n\n# Initialize NoiseGrad: enhance any explanation function!\nnoisegrad = NoiseGrad(NoiseGradConfig(n=5))\n\n# Initialize NoiseGrad++: enhance any explanation function!\nnoisegradp = NoiseGradPlusPlus(NoiseGradPlusPlusConfig(n=5, m=5))\n\n# Get baseline explanation.\nexpl_base = intgrad_explainer(model, x, y)\n\n# Get NoiseGrad explanation.\nexpl_ng = noisegrad.enhance_explanation(model, x, y, intgrad_explainer)\n\n# Get NoiseGrad++ explanation.\nexpl_ngp = noisegradp.enhance_explanation(model, x, y, intgrad_explainer)\n```\n\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A explanation enhancement method.",
    "version": "0.0.3",
    "split_keywords": [
        "explainable ai",
        "xai",
        "machine learning",
        "deep learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "efe25b302cf5c574a1a90c8a8fdb47c9c0146768d3d928b1d9c44f4b8159c1c8",
                "md5": "69eef3010eed7deee0e5d85b482da87c",
                "sha256": "34155b819fac633d8fd35e1f25675043fbaa48bf11a73f5ddf7e2029930edcc9"
            },
            "downloads": -1,
            "filename": "noisegrad-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "69eef3010eed7deee0e5d85b482da87c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 7173,
            "upload_time": "2023-04-09T22:02:53",
            "upload_time_iso_8601": "2023-04-09T22:02:53.464680Z",
            "url": "https://files.pythonhosted.org/packages/ef/e2/5b302cf5c574a1a90c8a8fdb47c9c0146768d3d928b1d9c44f4b8159c1c8/noisegrad-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9370e7a96233f95b61fad6da04825e19e7b66caf383f258badc71cb1c05a84f4",
                "md5": "d9402515f66245b141843f13403ec209",
                "sha256": "941d6810246f526fae359422700eb0d0e84f85641d0b59389b4db8d7b6869135"
            },
            "downloads": -1,
            "filename": "noisegrad-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "d9402515f66245b141843f13403ec209",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 8252,
            "upload_time": "2023-04-09T22:02:54",
            "upload_time_iso_8601": "2023-04-09T22:02:54.715821Z",
            "url": "https://files.pythonhosted.org/packages/93/70/e7a96233f95b61fad6da04825e19e7b66caf383f258badc71cb1c05a84f4/noisegrad-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-09 22:02:54",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "noisegrad"
}
        
Elapsed time: 0.05888s