nptorch


Namenptorch JSON
Version 0.0.2 PyPI version JSON
download
home_pageNone
SummaryA PyTorch clone made using NumPy (for CPU) and CuPy (for GPU)
upload_time2025-02-01 12:11:21
maintainerNone
docs_urlNone
authorNone
requires_python>=3.7
licenseMIT
keywords pytorch numpy automatic differentiation back propagation deep learning neural networks cupy auto grad
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # nptorch
A lightweight PyTorch clone - deep learning library built using **NumPy** (for CPU) and **CuPy** (for GPU). Ideal for understanding the core concepts of deep learning, backpropagation, automatic differentiation, and tensor operations in a minimalistic, easy-to-follow implementation. May be practically useful in scenarios where the library's small size and low dependency requirements are advantageous.

## Install nptorch using pip:

```bash
pip install nptorch

## Getting Started


```python
import nptorch as nt

# Create tensors
x = nt.tensor([[1.0, 2], [3, 4]], requires_grad=True)
y = nt.tensor([[5.0, 6], [7, 8]], requires_grad=True)

# Perform operations
z = x + y
w = z.mean()
w.backward()

# Print results
print("z:", z)
print("x.grad:", x.grad)
print("y.grad:", y.grad)
```

    z: tensor([[ 6.  8.]
            [10. 12.]], float32, grad_fn=<'Add' at 0x722942528260>)
    x.grad: tensor([[0.25 0.25]
            [0.25 0.25]], float32)
    y.grad: tensor([[0.25 0.25]
            [0.25 0.25]], float32)



```python

```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "nptorch",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "PyTorch, NumPy, Automatic Differentiation, Back Propagation, Deep Learning, Neural Networks, CuPy, Auto Grad",
    "author": null,
    "author_email": "Bhawik Jani <bhawikjani1@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/06/6d/e27a6c4a74819fd6c403077f3b461f3be319f2f7b571f2867a6fe5e31fbd/nptorch-0.0.2.tar.gz",
    "platform": null,
    "description": "# nptorch\nA lightweight PyTorch clone - deep learning library built using **NumPy** (for CPU) and **CuPy** (for GPU). Ideal for understanding the core concepts of deep learning, backpropagation, automatic differentiation, and tensor operations in a minimalistic, easy-to-follow implementation. May be practically useful in scenarios where the library's small size and low dependency requirements are advantageous.\n\n## Install nptorch using pip:\n\n```bash\npip install nptorch\n\n## Getting Started\n\n\n```python\nimport nptorch as nt\n\n# Create tensors\nx = nt.tensor([[1.0, 2], [3, 4]], requires_grad=True)\ny = nt.tensor([[5.0, 6], [7, 8]], requires_grad=True)\n\n# Perform operations\nz = x + y\nw = z.mean()\nw.backward()\n\n# Print results\nprint(\"z:\", z)\nprint(\"x.grad:\", x.grad)\nprint(\"y.grad:\", y.grad)\n```\n\n    z: tensor([[ 6.  8.]\n            [10. 12.]], float32, grad_fn=<'Add' at 0x722942528260>)\n    x.grad: tensor([[0.25 0.25]\n            [0.25 0.25]], float32)\n    y.grad: tensor([[0.25 0.25]\n            [0.25 0.25]], float32)\n\n\n\n```python\n\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A PyTorch clone made using NumPy (for CPU) and CuPy (for GPU)",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/bhawik-jani/nptorch"
    },
    "split_keywords": [
        "pytorch",
        " numpy",
        " automatic differentiation",
        " back propagation",
        " deep learning",
        " neural networks",
        " cupy",
        " auto grad"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "463f31ebdb17272f752a7168f3c6bd0adc9d271a7858431ff2564ee6745d7311",
                "md5": "95ce4f8d673afe869f6894cdeff79cd7",
                "sha256": "b187beff19a3b789eea44613324fae9316d76524133a7e607d5a897be70934d0"
            },
            "downloads": -1,
            "filename": "nptorch-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "95ce4f8d673afe869f6894cdeff79cd7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 19629,
            "upload_time": "2025-02-01T12:11:19",
            "upload_time_iso_8601": "2025-02-01T12:11:19.398033Z",
            "url": "https://files.pythonhosted.org/packages/46/3f/31ebdb17272f752a7168f3c6bd0adc9d271a7858431ff2564ee6745d7311/nptorch-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "066de27a6c4a74819fd6c403077f3b461f3be319f2f7b571f2867a6fe5e31fbd",
                "md5": "e00c40f520d3003587beac9b52b061db",
                "sha256": "c40c896ee21aa1229eb8be75403c8dfa55edf74b308bd6ea747fba574e95de40"
            },
            "downloads": -1,
            "filename": "nptorch-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "e00c40f520d3003587beac9b52b061db",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 19119,
            "upload_time": "2025-02-01T12:11:21",
            "upload_time_iso_8601": "2025-02-01T12:11:21.569964Z",
            "url": "https://files.pythonhosted.org/packages/06/6d/e27a6c4a74819fd6c403077f3b461f3be319f2f7b571f2867a6fe5e31fbd/nptorch-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-01 12:11:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "bhawik-jani",
    "github_project": "nptorch",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "nptorch"
}
        
Elapsed time: 0.74338s