numroot


Namenumroot JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryNumerical analysis solver for equations and optimization
upload_time2025-08-28 11:52:01
maintainerGalhardo Jules
docs_urlNone
authorGalhardo Jules
requires_python>=3.8
licenseNone
keywords numerical-analysis mathematics solver equations
VCS
bugtrack_url
requirements numpy pytest
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # NumRoot

[![PyPI version](https://badge.fury.io/py/numroot.svg)](https://badge.fury.io/py/numroot)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)

Python package for numerical resolution of nonlinear equations with several numerical analysis methods.

## πŸš€ Installation

```bash
pip install numroot
```

### Development installation

```bash
pip install numroot[dev]
```

## πŸ“– Quick use

```python
from numroot import NonlinearSolver

# Create a solver object
solver = NonlinearSolver()

# Define a function to analyse (example: xΒ² - 2 = 0)
def f(x):
    return x**2 - 2

# Bissection method
result = solver.bisection(f, x_a=0, x_b=2, epsilon=1e-6)
print(f"Root found: {result.root}")  # β‰ˆ 1.414
print(f"Number of iterations: {result.iterations}")

# Newton-Raphson method
def df(x):
    return 2*x

result = solver.newton_raphson(f, df, x_0=1.5, epsilon=1e-6)
print(f"Root found: {result.root}")  # β‰ˆ 1.414
print(f"Number of iterations: {result.iterations}")

# Secant method
result = solver.secant(f, x_0=1.0, x_1=2.0, epsilon=1e-6)
print(f"Root found: {result.root}")  # β‰ˆ 1.414
print(f"Number of iterations: {result.iterations}")
```

## πŸ”§ Available methods

### Bissection method
- **Advantages**: Always convergent, robust
- **Disadvantages**: Slow convergence
- **Usage**: When you have an interval [a,b] where f(a) and f(b) have opposite signs

```python
result = solver.bisection(func, a, b, epsilon=1e-6, maxiter=100)
```

### Newton-Raphson method
- **Advantages**: Very fast quadratic convergence
- **Disadvantages**: Requires derivative, may diverge
- **Usage**: When you know the derivative and have a good initial estimate

```python
result = solver.newton_raphson(func, dfunc, x0, epsilon=1e-6, maxiter=100)
```

### Secant method
- **Advantages**: No derivative needed, super-linear convergence
- **Disadvantages**: Can be unstable with bad initial points.
- **Uses**: Compromise between bisection and Newton-Raphson

```python
result = solver.secant(func, x0, x1, epsilon=1e-6, maxiter=100)
```

## 🎯 Typical use cases

- Solving physical equations (trajectories, oscillations)
- Engineering calculations (balance points, intersections)
- Mathematical modeling (zeros of complex functions)
- Research and education in numerical analysis

## πŸ“‹ Requirements

- Python 3.8+
- NumPy >= 1.20.0

## πŸ”— Links

- [Documentation complète](https://numroot.readthedocs.io/)
- [PyPI](https://pypi.org/project/numroot/)
- [Issues GitHub](https://github.com/Onniryss/numroot/issues)
- [Code source](https://github.com/Onniryss/numroot)

## πŸ“ˆ Roadmap

- [ ] Systems of non-linear equations
- [ ] Ordinary differential equations
- [ ] Numerical optimization
- [ ] Graphical interface
- [ ] Interactive visualizations

## πŸ“š References

- [Geeks for Geeks - Secant method](https://www.geeksforgeeks.org/secant-method-of-numerical-analysis/)
- [Math Libretexts - Bisection Method](https://math.libretexts.org/Workbench/Numerical_Methods_with_Applications_(Kaw)/3:_Nonlinear_Equations/3.03:_Bisection_Methods_for_Solving_a_Nonlinear_Equation)
- [Math Libretexts - Newton-Raphson Method](https://math.libretexts.org/Workbench/Numerical_Methods_with_Applications_(Kaw)/3:_Nonlinear_Equations/3.04:_Newton-Raphson_Method_for_Solving_a_Nonlinear_Equation)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "numroot",
    "maintainer": "Galhardo Jules",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "numerical-analysis, mathematics, solver, equations",
    "author": "Galhardo Jules",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/ef/95/dccc3de94a998b6ecb0d639a775d0f05aa45913fab964428ea134c07ddd5/numroot-0.1.1.tar.gz",
    "platform": null,
    "description": "# NumRoot\n\n[![PyPI version](https://badge.fury.io/py/numroot.svg)](https://badge.fury.io/py/numroot)\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\n\nPython package for numerical resolution of nonlinear equations with several numerical analysis methods.\n\n## \ud83d\ude80 Installation\n\n```bash\npip install numroot\n```\n\n### Development installation\n\n```bash\npip install numroot[dev]\n```\n\n## \ud83d\udcd6 Quick use\n\n```python\nfrom numroot import NonlinearSolver\n\n# Create a solver object\nsolver = NonlinearSolver()\n\n# Define a function to analyse (example: x\u00b2 - 2 = 0)\ndef f(x):\n    return x**2 - 2\n\n# Bissection method\nresult = solver.bisection(f, x_a=0, x_b=2, epsilon=1e-6)\nprint(f\"Root found: {result.root}\")  # \u2248 1.414\nprint(f\"Number of iterations: {result.iterations}\")\n\n# Newton-Raphson method\ndef df(x):\n    return 2*x\n\nresult = solver.newton_raphson(f, df, x_0=1.5, epsilon=1e-6)\nprint(f\"Root found: {result.root}\")  # \u2248 1.414\nprint(f\"Number of iterations: {result.iterations}\")\n\n# Secant method\nresult = solver.secant(f, x_0=1.0, x_1=2.0, epsilon=1e-6)\nprint(f\"Root found: {result.root}\")  # \u2248 1.414\nprint(f\"Number of iterations: {result.iterations}\")\n```\n\n## \ud83d\udd27 Available methods\n\n### Bissection method\n- **Advantages**: Always convergent, robust\n- **Disadvantages**: Slow convergence\n- **Usage**: When you have an interval [a,b] where f(a) and f(b) have opposite signs\n\n```python\nresult = solver.bisection(func, a, b, epsilon=1e-6, maxiter=100)\n```\n\n### Newton-Raphson method\n- **Advantages**: Very fast quadratic convergence\n- **Disadvantages**: Requires derivative, may diverge\n- **Usage**: When you know the derivative and have a good initial estimate\n\n```python\nresult = solver.newton_raphson(func, dfunc, x0, epsilon=1e-6, maxiter=100)\n```\n\n### Secant method\n- **Advantages**: No derivative needed, super-linear convergence\n- **Disadvantages**: Can be unstable with bad initial points.\n- **Uses**: Compromise between bisection and Newton-Raphson\n\n```python\nresult = solver.secant(func, x0, x1, epsilon=1e-6, maxiter=100)\n```\n\n## \ud83c\udfaf Typical use cases\n\n- Solving physical equations (trajectories, oscillations)\n- Engineering calculations (balance points, intersections)\n- Mathematical modeling (zeros of complex functions)\n- Research and education in numerical analysis\n\n## \ud83d\udccb Requirements\n\n- Python 3.8+\n- NumPy >= 1.20.0\n\n## \ud83d\udd17 Links\n\n- [Documentation compl\u00e8te](https://numroot.readthedocs.io/)\n- [PyPI](https://pypi.org/project/numroot/)\n- [Issues GitHub](https://github.com/Onniryss/numroot/issues)\n- [Code source](https://github.com/Onniryss/numroot)\n\n## \ud83d\udcc8 Roadmap\n\n- [ ] Systems of non-linear equations\n- [ ] Ordinary differential equations\n- [ ] Numerical optimization\n- [ ] Graphical interface\n- [ ] Interactive visualizations\n\n## \ud83d\udcda References\n\n- [Geeks for Geeks - Secant method](https://www.geeksforgeeks.org/secant-method-of-numerical-analysis/)\n- [Math Libretexts - Bisection Method](https://math.libretexts.org/Workbench/Numerical_Methods_with_Applications_(Kaw)/3:_Nonlinear_Equations/3.03:_Bisection_Methods_for_Solving_a_Nonlinear_Equation)\n- [Math Libretexts - Newton-Raphson Method](https://math.libretexts.org/Workbench/Numerical_Methods_with_Applications_(Kaw)/3:_Nonlinear_Equations/3.04:_Newton-Raphson_Method_for_Solving_a_Nonlinear_Equation)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Numerical analysis solver for equations and optimization",
    "version": "0.1.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/Onniryss/numroot/issues",
        "Documentation": "https://numroot.readthedocs.io/",
        "Homepage": "https://github.com/Onniryss/numroot",
        "Repository": "https://github.com/Onniryss/numroot.git"
    },
    "split_keywords": [
        "numerical-analysis",
        " mathematics",
        " solver",
        " equations"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a05f3b0bad377a9ad387b78a12b48e275a7ba814519320efd8901028d141ce99",
                "md5": "a49d4888226498cc1eba505e21e0d92f",
                "sha256": "83840dbb00fbc844744af4e4ba6ec22d1a0190d31f3580c6c34a8b45e56ab4ab"
            },
            "downloads": -1,
            "filename": "numroot-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a49d4888226498cc1eba505e21e0d92f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 2599,
            "upload_time": "2025-08-28T11:52:00",
            "upload_time_iso_8601": "2025-08-28T11:52:00.106495Z",
            "url": "https://files.pythonhosted.org/packages/a0/5f/3b0bad377a9ad387b78a12b48e275a7ba814519320efd8901028d141ce99/numroot-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ef95dccc3de94a998b6ecb0d639a775d0f05aa45913fab964428ea134c07ddd5",
                "md5": "8cd9d9ca0a0acea523c120984cf7cef1",
                "sha256": "98484f1c098de6859c81d7e80fef74644aa43f3e1f4c9fb3b8c2d295607d9a4c"
            },
            "downloads": -1,
            "filename": "numroot-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "8cd9d9ca0a0acea523c120984cf7cef1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 3419,
            "upload_time": "2025-08-28T11:52:01",
            "upload_time_iso_8601": "2025-08-28T11:52:01.175595Z",
            "url": "https://files.pythonhosted.org/packages/ef/95/dccc3de94a998b6ecb0d639a775d0f05aa45913fab964428ea134c07ddd5/numroot-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-28 11:52:01",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Onniryss",
    "github_project": "numroot",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pytest",
            "specs": []
        }
    ],
    "lcname": "numroot"
}
        
Elapsed time: 1.32274s