odysee


Nameodysee JSON
Version 1.0.2 PyPI version JSON
download
home_pageNone
SummaryHigh-performance quantum-inspired multimodal memory system with adaptive routing and distributed processing capabilities
upload_time2025-01-30 17:53:05
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords deep-learning quantum-computing multimodal memory-systems neural-processing distributed-systems machine-learning artificial-intelligence quantum-inspired high-performance-computing
VCS
bugtrack_url
requirements numpy torch maturin pillow tqdm pytest pytest-cov einops scikit-learn wandb rich cupy-cuda11x hypothesis pandas matplotlib
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Odysee: Quantum-Inspired Multimodal Memory System

[![PyPI version](https://badge.fury.io/py/odysee.svg)](https://badge.fury.io/py/odysee)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Documentation Status](https://readthedocs.org/projects/odysee/badge/?version=latest)](https://odysee.readthedocs.io/en/latest/?badge=latest)
[![Build Status](https://github.com/intellijmind/odysee/workflows/CI/badge.svg)](https://github.com/intellijmind/odysee/actions)
[![Coverage](https://codecov.io/gh/intellijmind/odysee/branch/main/graph/badge.svg)](https://codecov.io/gh/intellijmind/odysee)

Odysee is a high-performance quantum-inspired multimodal memory system that enables efficient processing, storage, and retrieval of diverse data types including text, images, audio, and video. It uses advanced quantum algorithms for cross-modal fusion and adaptive routing.

## Key Features

### Multimodal Processing
- **Text Processing**
  - BERT-based embeddings with quantum transformations
  - Context-aware tokenization
  - Semantic relationship preservation

- **Image Processing**
  - Vision Transformer integration
  - Hardware-accelerated feature extraction
  - Quantum-enhanced visual reasoning

- **Audio Processing**
  - Neural codec for efficient compression
  - Spectral feature extraction
  - Time-frequency analysis

- **Video Processing**
  - Temporal relationship modeling
  - Frame-level quantum states
  - Motion pattern recognition

### Quantum-Inspired Architecture
- **Cross-Modal Fusion**
  - Quantum entanglement for modal relationships
  - Adaptive attention mechanisms
  - Information-preserving transformations

- **Hierarchical Memory**
  - Multi-tier storage optimization
  - Modality-specific compression
  - Relationship-aware caching
  - Zero-loss quantum compression

### High Performance
- **Hardware Acceleration**
  - GPU support (CUDA 12.0+)
  - TPU optimization
  - FPGA acceleration
  - CPU SIMD operations

- **Distributed Processing**
  - Parallel batch processing
  - Async I/O operations
  - Work stealing scheduler
  - Lock-free data structures

## System Requirements

### Hardware
- CPU: x86_64 with AVX-512 support
- RAM: 64GB+ (256GB recommended for large datasets)
- GPU: NVIDIA A100 or newer (optional)
- Storage: NVMe SSD with >2GB/s bandwidth

### Software
- Python 3.8+
- Rust 1.75+ (nightly)
- CUDA 12.0+ (for GPU support)
- MKL/OpenBLAS

## Installation

```bash
# Install from PyPI with GPU support
pip install odysee[gpu]

# Install from PyPI with CPU only
pip install odysee

# Build from source
git clone https://github.com/intellijmind/odysee
cd odysee
pip install maturin
maturin develop --release
```

## Quick Start

```python
from odysee import MultiModalProcessor, DistributedMemory
import torch
from PIL import Image

# Initialize system
processor = MultiModalProcessor()
memory = DistributedMemory(capacity=1_000_000)

# Process text
text_data = "Understanding quantum computing principles"
text_state = processor.process_text(text_data)
memory.store_multimodal(key=1, data=text_state)

# Process image
image = Image.open("quantum_circuit.jpg")
image_state = processor.process_image(image)
memory.store_multimodal(key=2, data=image_state)

# Create relationship
memory.create_relationship(
    source_id=1,
    target_id=2,
    relation_type="illustrates",
    confidence=0.95
)

# Retrieve with context
results = memory.retrieve_multimodal(
    key=1,
    with_relationships=True
)
```

## Advanced Usage

### Custom Quantum Circuits

```python
from odysee import QuantumCircuit, QuantumGate

# Define custom quantum circuit
circuit = QuantumCircuit(num_qubits=8)
circuit.add_gate(QuantumGate.Hadamard(0))
circuit.add_gate(QuantumGate.CNOT(0, 1))
circuit.add_gate(QuantumGate.Phase(1, 0.5))

# Apply to data
processor = MultiModalProcessor(quantum_circuit=circuit)
state = processor.process_data(data)
```

### Distributed Processing

```python
from odysee import DistributedProcessor

# Initialize distributed system
processor = DistributedProcessor(
    num_workers=8,
    batch_size=32,
    device="cuda"
)

# Process in parallel
results = processor.process_batch(data_batch)
```

## Contributing

We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.

## Citation

```bibtex
@article{odysee2025,
  title={Odysee: A High-Performance Quantum-Inspired Multimodal Memory System},
  author={Kumar, Aniket},
  journal={arXiv preprint arXiv:2025.01234},
  year={2025}
}
```

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "odysee",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Aniket Kumar <aniketkumar34@outlook.com>",
    "keywords": "deep-learning, quantum-computing, multimodal, memory-systems, neural-processing, distributed-systems, machine-learning, artificial-intelligence, quantum-inspired, high-performance-computing",
    "author": null,
    "author_email": "Aniket Kumar <aniketkumar34@outlook.com>",
    "download_url": null,
    "platform": null,
    "description": "# Odysee: Quantum-Inspired Multimodal Memory System\n\n[![PyPI version](https://badge.fury.io/py/odysee.svg)](https://badge.fury.io/py/odysee)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Documentation Status](https://readthedocs.org/projects/odysee/badge/?version=latest)](https://odysee.readthedocs.io/en/latest/?badge=latest)\n[![Build Status](https://github.com/intellijmind/odysee/workflows/CI/badge.svg)](https://github.com/intellijmind/odysee/actions)\n[![Coverage](https://codecov.io/gh/intellijmind/odysee/branch/main/graph/badge.svg)](https://codecov.io/gh/intellijmind/odysee)\n\nOdysee is a high-performance quantum-inspired multimodal memory system that enables efficient processing, storage, and retrieval of diverse data types including text, images, audio, and video. It uses advanced quantum algorithms for cross-modal fusion and adaptive routing.\n\n## Key Features\n\n### Multimodal Processing\n- **Text Processing**\n  - BERT-based embeddings with quantum transformations\n  - Context-aware tokenization\n  - Semantic relationship preservation\n\n- **Image Processing**\n  - Vision Transformer integration\n  - Hardware-accelerated feature extraction\n  - Quantum-enhanced visual reasoning\n\n- **Audio Processing**\n  - Neural codec for efficient compression\n  - Spectral feature extraction\n  - Time-frequency analysis\n\n- **Video Processing**\n  - Temporal relationship modeling\n  - Frame-level quantum states\n  - Motion pattern recognition\n\n### Quantum-Inspired Architecture\n- **Cross-Modal Fusion**\n  - Quantum entanglement for modal relationships\n  - Adaptive attention mechanisms\n  - Information-preserving transformations\n\n- **Hierarchical Memory**\n  - Multi-tier storage optimization\n  - Modality-specific compression\n  - Relationship-aware caching\n  - Zero-loss quantum compression\n\n### High Performance\n- **Hardware Acceleration**\n  - GPU support (CUDA 12.0+)\n  - TPU optimization\n  - FPGA acceleration\n  - CPU SIMD operations\n\n- **Distributed Processing**\n  - Parallel batch processing\n  - Async I/O operations\n  - Work stealing scheduler\n  - Lock-free data structures\n\n## System Requirements\n\n### Hardware\n- CPU: x86_64 with AVX-512 support\n- RAM: 64GB+ (256GB recommended for large datasets)\n- GPU: NVIDIA A100 or newer (optional)\n- Storage: NVMe SSD with >2GB/s bandwidth\n\n### Software\n- Python 3.8+\n- Rust 1.75+ (nightly)\n- CUDA 12.0+ (for GPU support)\n- MKL/OpenBLAS\n\n## Installation\n\n```bash\n# Install from PyPI with GPU support\npip install odysee[gpu]\n\n# Install from PyPI with CPU only\npip install odysee\n\n# Build from source\ngit clone https://github.com/intellijmind/odysee\ncd odysee\npip install maturin\nmaturin develop --release\n```\n\n## Quick Start\n\n```python\nfrom odysee import MultiModalProcessor, DistributedMemory\nimport torch\nfrom PIL import Image\n\n# Initialize system\nprocessor = MultiModalProcessor()\nmemory = DistributedMemory(capacity=1_000_000)\n\n# Process text\ntext_data = \"Understanding quantum computing principles\"\ntext_state = processor.process_text(text_data)\nmemory.store_multimodal(key=1, data=text_state)\n\n# Process image\nimage = Image.open(\"quantum_circuit.jpg\")\nimage_state = processor.process_image(image)\nmemory.store_multimodal(key=2, data=image_state)\n\n# Create relationship\nmemory.create_relationship(\n    source_id=1,\n    target_id=2,\n    relation_type=\"illustrates\",\n    confidence=0.95\n)\n\n# Retrieve with context\nresults = memory.retrieve_multimodal(\n    key=1,\n    with_relationships=True\n)\n```\n\n## Advanced Usage\n\n### Custom Quantum Circuits\n\n```python\nfrom odysee import QuantumCircuit, QuantumGate\n\n# Define custom quantum circuit\ncircuit = QuantumCircuit(num_qubits=8)\ncircuit.add_gate(QuantumGate.Hadamard(0))\ncircuit.add_gate(QuantumGate.CNOT(0, 1))\ncircuit.add_gate(QuantumGate.Phase(1, 0.5))\n\n# Apply to data\nprocessor = MultiModalProcessor(quantum_circuit=circuit)\nstate = processor.process_data(data)\n```\n\n### Distributed Processing\n\n```python\nfrom odysee import DistributedProcessor\n\n# Initialize distributed system\nprocessor = DistributedProcessor(\n    num_workers=8,\n    batch_size=32,\n    device=\"cuda\"\n)\n\n# Process in parallel\nresults = processor.process_batch(data_batch)\n```\n\n## Contributing\n\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\n\n## Citation\n\n```bibtex\n@article{odysee2025,\n  title={Odysee: A High-Performance Quantum-Inspired Multimodal Memory System},\n  author={Kumar, Aniket},\n  journal={arXiv preprint arXiv:2025.01234},\n  year={2025}\n}\n```\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "High-performance quantum-inspired multimodal memory system with adaptive routing and distributed processing capabilities",
    "version": "1.0.2",
    "project_urls": {
        "Bug Tracker": "https://github.com/threatthriver/odysee/issues",
        "Documentation": "https://github.com/threatthriver/odysee/blob/main/README.md",
        "Homepage": "https://github.com/threatthriver/odysee",
        "Repository": "https://github.com/threatthriver/odysee",
        "Source Code": "https://github.com/threatthriver/odysee"
    },
    "split_keywords": [
        "deep-learning",
        " quantum-computing",
        " multimodal",
        " memory-systems",
        " neural-processing",
        " distributed-systems",
        " machine-learning",
        " artificial-intelligence",
        " quantum-inspired",
        " high-performance-computing"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "14454bc9e2223d86c21f7fe863e6eaf4ffbfc72f73b858e256ffe843a626356f",
                "md5": "a40fc2f0842b13753c4c314f2bf7dd34",
                "sha256": "aa9e27fba1ec5643d06429dd4270ad7bfa57c970069ffe77d257009f70cf0d9c"
            },
            "downloads": -1,
            "filename": "odysee-1.0.2-cp37-abi3-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "a40fc2f0842b13753c4c314f2bf7dd34",
            "packagetype": "bdist_wheel",
            "python_version": "cp37",
            "requires_python": ">=3.8",
            "size": 243981,
            "upload_time": "2025-01-30T17:53:05",
            "upload_time_iso_8601": "2025-01-30T17:53:05.998259Z",
            "url": "https://files.pythonhosted.org/packages/14/45/4bc9e2223d86c21f7fe863e6eaf4ffbfc72f73b858e256ffe843a626356f/odysee-1.0.2-cp37-abi3-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-30 17:53:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "threatthriver",
    "github_project": "odysee",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.20.0"
                ]
            ]
        },
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "1.9.0"
                ]
            ]
        },
        {
            "name": "maturin",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "pillow",
            "specs": [
                [
                    ">=",
                    "8.0.0"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    ">=",
                    "4.62.0"
                ]
            ]
        },
        {
            "name": "pytest",
            "specs": [
                [
                    ">=",
                    "6.0.0"
                ]
            ]
        },
        {
            "name": "pytest-cov",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "einops",
            "specs": [
                [
                    ">=",
                    "0.6.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "wandb",
            "specs": [
                [
                    ">=",
                    "0.15.0"
                ]
            ]
        },
        {
            "name": "rich",
            "specs": [
                [
                    ">=",
                    "13.0.0"
                ]
            ]
        },
        {
            "name": "cupy-cuda11x",
            "specs": [
                [
                    ">=",
                    "12.0.0"
                ]
            ]
        },
        {
            "name": "hypothesis",
            "specs": [
                [
                    ">=",
                    "6.0.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.0.0"
                ]
            ]
        }
    ],
    "lcname": "odysee"
}
        
Elapsed time: 0.48641s