omixvizpy


Nameomixvizpy JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryA Python package for omics data visualization with a focus on PCA plotting
upload_time2025-07-30 11:45:38
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT License Copyright (c) 2025 Zhen Lu Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
keywords bioinformatics data visualization omics pca plotting principal component analysis visualization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # omixvizpy

A Python package for omics data visualization, particularly focused on Principal Component Analysis (PCA) plotting.

## Features

- **PCA Visualization**: Create comprehensive PCA plots with multiple grouping options
- **Flexible Plotting**: Support for scatter plots and pair plots of principal components
- **Customizable**: Easy-to-use functions with extensive customization options
- **Publication Ready**: High-quality plots suitable for scientific publications

## Installation

### From PyPI (recommended)

```bash
pip install omixvizpy
```

### From Source

```bash
git clone https://github.com/Leslie-Lu/omixvizpy.git
cd omixvizpy
pip install -e .
```

## Quick Start

```python
import omixvizpy

# Plot PCA results with covariates
omixvizpy.plot_pca(
    eigenvec_file="path/to/your/eigenvec.txt",
    covar_file="path/to/your/covariates.csv",
    cov1="Country_of_birth",                    # First covariate
    cov2="Ethnic_background",                   # Second covariate (optional)
    legend_title_cov1="Country of Birth",       # Legend title for first covariate
    legend_title_cov2="Ethnicity",             # Legend title for second covariate
    cov1_levels=["England", "Wales", "Scotland", "Others"],  # Labels for first covariate
    cov2_levels=["White", "Asian", "Black", "Others"],      # Labels for second covariate
    fig_path="output/directory",                # Output directory
    fig1_name="variance_explained",             # Variance plot
    fig2_name="pc1_vs_pc2",                    # PC1 vs PC2 scatter plot
    fig3_name="pca_by_country",                # Pairplot by first covariate
    fig4_name="pca_by_ethnicity",              # Pairplot by second covariate
    save_figs=True                             # Save figures instead of displaying
)
```

## Function Reference

### `plot_pca`

Create comprehensive PCA visualization plots.

**Parameters:**
- `eigenvec_file` (str): Path to the eigenvec file containing PCA results
- `covar_file` (str): Path to the CSV file containing covariate information
- `cov1` (str): Name of the first covariate column (default: 'Country_of_birth')
- `cov2` (Optional[str]): Name of the second covariate column
- `legend_title_cov1` (str): Title for the first covariate's legend
- `legend_title_cov2` (Optional[str]): Title for the second covariate's legend
- `cov1_levels` (List[str]): Labels for the first covariate's values
- `cov2_levels` (Optional[List[str]]): Labels for the second covariate's values
- `fig_path` (Optional[str]): Directory path where figures will be saved
- `fig1_name` (str): Name for the variance explained plot (default: 'variance_explained')
- `fig2_name` (str): Name for the PC1 vs PC2 scatter plot
- `fig3_name` (str): Name for the pairplot colored by first covariate
- `fig4_name` (str): Name for the pairplot colored by second covariate
- `save_figs` (bool): Whether to save the figures (default: False)

**Returns:**
- Displays interactive plots and optionally saves them as PNG files

## Input Data Format

### Eigenvec File
The eigenvec file should be a tab-separated file with the following columns:
- `eid`: Sample identifier
- `PC1`, `PC2`, `PC3`, etc.: Principal component values

### Covariate File
The covariate file should be a comma-separated (CSV) file with the following structure:
- `eid`: Sample identifier (matching eigenvec file)
- Additional columns for covariates (e.g., `Country_of_birth`, `Ethnic_background`)
  - Values in these columns should correspond to the levels specified in `cov1_levels` and `cov2_levels`
  - The order of levels in `cov*_levels` determines the order in the plot legend

## Requirements

- Python >=3.8
- pandas >=1.3.0
- matplotlib >=3.3.0
- seaborn >=0.11.0
- numpy >=1.20.0

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

1. Fork the repository
2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Citation

If you use omixvizpy in your research, please cite:

```
@software{omixvizpy,
  title={omixvizpy: A Python package for omics data visualization},
  author={Zhen Lu},
  year={2025},
  url={https://github.com/Leslie-Lu/omixvizpy}
}
```

## Changelog

### v0.1.0 (2025-07-23)
- Initial release
- PCA plotting functionality

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "omixvizpy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Zhen Lu <luzh29@mail2.sysu.edu.cn>",
    "keywords": "bioinformatics, data visualization, omics, pca, plotting, principal component analysis, visualization",
    "author": null,
    "author_email": "Zhen Lu <luzh29@mail2.sysu.edu.cn>",
    "download_url": "https://files.pythonhosted.org/packages/5a/e2/1ff646e62d2c7ba27dbd4b6707afa70655275058480300ef554bf5022577/omixvizpy-0.1.0.tar.gz",
    "platform": null,
    "description": "# omixvizpy\n\nA Python package for omics data visualization, particularly focused on Principal Component Analysis (PCA) plotting.\n\n## Features\n\n- **PCA Visualization**: Create comprehensive PCA plots with multiple grouping options\n- **Flexible Plotting**: Support for scatter plots and pair plots of principal components\n- **Customizable**: Easy-to-use functions with extensive customization options\n- **Publication Ready**: High-quality plots suitable for scientific publications\n\n## Installation\n\n### From PyPI (recommended)\n\n```bash\npip install omixvizpy\n```\n\n### From Source\n\n```bash\ngit clone https://github.com/Leslie-Lu/omixvizpy.git\ncd omixvizpy\npip install -e .\n```\n\n## Quick Start\n\n```python\nimport omixvizpy\n\n# Plot PCA results with covariates\nomixvizpy.plot_pca(\n    eigenvec_file=\"path/to/your/eigenvec.txt\",\n    covar_file=\"path/to/your/covariates.csv\",\n    cov1=\"Country_of_birth\",                    # First covariate\n    cov2=\"Ethnic_background\",                   # Second covariate (optional)\n    legend_title_cov1=\"Country of Birth\",       # Legend title for first covariate\n    legend_title_cov2=\"Ethnicity\",             # Legend title for second covariate\n    cov1_levels=[\"England\", \"Wales\", \"Scotland\", \"Others\"],  # Labels for first covariate\n    cov2_levels=[\"White\", \"Asian\", \"Black\", \"Others\"],      # Labels for second covariate\n    fig_path=\"output/directory\",                # Output directory\n    fig1_name=\"variance_explained\",             # Variance plot\n    fig2_name=\"pc1_vs_pc2\",                    # PC1 vs PC2 scatter plot\n    fig3_name=\"pca_by_country\",                # Pairplot by first covariate\n    fig4_name=\"pca_by_ethnicity\",              # Pairplot by second covariate\n    save_figs=True                             # Save figures instead of displaying\n)\n```\n\n## Function Reference\n\n### `plot_pca`\n\nCreate comprehensive PCA visualization plots.\n\n**Parameters:**\n- `eigenvec_file` (str): Path to the eigenvec file containing PCA results\n- `covar_file` (str): Path to the CSV file containing covariate information\n- `cov1` (str): Name of the first covariate column (default: 'Country_of_birth')\n- `cov2` (Optional[str]): Name of the second covariate column\n- `legend_title_cov1` (str): Title for the first covariate's legend\n- `legend_title_cov2` (Optional[str]): Title for the second covariate's legend\n- `cov1_levels` (List[str]): Labels for the first covariate's values\n- `cov2_levels` (Optional[List[str]]): Labels for the second covariate's values\n- `fig_path` (Optional[str]): Directory path where figures will be saved\n- `fig1_name` (str): Name for the variance explained plot (default: 'variance_explained')\n- `fig2_name` (str): Name for the PC1 vs PC2 scatter plot\n- `fig3_name` (str): Name for the pairplot colored by first covariate\n- `fig4_name` (str): Name for the pairplot colored by second covariate\n- `save_figs` (bool): Whether to save the figures (default: False)\n\n**Returns:**\n- Displays interactive plots and optionally saves them as PNG files\n\n## Input Data Format\n\n### Eigenvec File\nThe eigenvec file should be a tab-separated file with the following columns:\n- `eid`: Sample identifier\n- `PC1`, `PC2`, `PC3`, etc.: Principal component values\n\n### Covariate File\nThe covariate file should be a comma-separated (CSV) file with the following structure:\n- `eid`: Sample identifier (matching eigenvec file)\n- Additional columns for covariates (e.g., `Country_of_birth`, `Ethnic_background`)\n  - Values in these columns should correspond to the levels specified in `cov1_levels` and `cov2_levels`\n  - The order of levels in `cov*_levels` determines the order in the plot legend\n\n## Requirements\n\n- Python >=3.8\n- pandas >=1.3.0\n- matplotlib >=3.3.0\n- seaborn >=0.11.0\n- numpy >=1.20.0\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n1. Fork the repository\n2. Create your feature branch (`git checkout -b feature/AmazingFeature`)\n3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)\n4. Push to the branch (`git push origin feature/AmazingFeature`)\n5. Open a Pull Request\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## Citation\n\nIf you use omixvizpy in your research, please cite:\n\n```\n@software{omixvizpy,\n  title={omixvizpy: A Python package for omics data visualization},\n  author={Zhen Lu},\n  year={2025},\n  url={https://github.com/Leslie-Lu/omixvizpy}\n}\n```\n\n## Changelog\n\n### v0.1.0 (2025-07-23)\n- Initial release\n- PCA plotting functionality\n",
    "bugtrack_url": null,
    "license": "MIT License\n        \n        Copyright (c) 2025 Zhen Lu\n        \n        Permission is hereby granted, free of charge, to any person obtaining a copy\n        of this software and associated documentation files (the \"Software\"), to deal\n        in the Software without restriction, including without limitation the rights\n        to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n        copies of the Software, and to permit persons to whom the Software is\n        furnished to do so, subject to the following conditions:\n        \n        The above copyright notice and this permission notice shall be included in all\n        copies or substantial portions of the Software.\n        \n        THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n        IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n        FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n        AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n        LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n        OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\n        SOFTWARE.",
    "summary": "A Python package for omics data visualization with a focus on PCA plotting",
    "version": "0.1.0",
    "project_urls": {
        "Bug Reports": "https://github.com/Leslie-Lu/omixvizpy/issues",
        "Documentation": "https://github.com/Leslie-Lu/omixvizpy#readme",
        "Homepage": "https://github.com/Leslie-Lu/omixvizpy",
        "Source": "https://github.com/Leslie-Lu/omixvizpy"
    },
    "split_keywords": [
        "bioinformatics",
        " data visualization",
        " omics",
        " pca",
        " plotting",
        " principal component analysis",
        " visualization"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c9b4e3ca10c11c2598f8bc05e3646e0c7d1d2da09a8aece7156327a506551feb",
                "md5": "ced24a54af8b4f4d185a7479f31aeab8",
                "sha256": "b3a81b96976d18618f7bd9e6da3847a851cdabddd234911637a52323571d121c"
            },
            "downloads": -1,
            "filename": "omixvizpy-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ced24a54af8b4f4d185a7479f31aeab8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 9145,
            "upload_time": "2025-07-30T11:45:37",
            "upload_time_iso_8601": "2025-07-30T11:45:37.519141Z",
            "url": "https://files.pythonhosted.org/packages/c9/b4/e3ca10c11c2598f8bc05e3646e0c7d1d2da09a8aece7156327a506551feb/omixvizpy-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5ae21ff646e62d2c7ba27dbd4b6707afa70655275058480300ef554bf5022577",
                "md5": "fbb6db960da3998f72198ddb6ff6154f",
                "sha256": "3b0ea15bde89a17fe5378ffd74573b0adf748ae878f5fc25f43799f9e2d3b334"
            },
            "downloads": -1,
            "filename": "omixvizpy-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "fbb6db960da3998f72198ddb6ff6154f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 10920,
            "upload_time": "2025-07-30T11:45:38",
            "upload_time_iso_8601": "2025-07-30T11:45:38.993171Z",
            "url": "https://files.pythonhosted.org/packages/5a/e2/1ff646e62d2c7ba27dbd4b6707afa70655275058480300ef554bf5022577/omixvizpy-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-30 11:45:38",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Leslie-Lu",
    "github_project": "omixvizpy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "omixvizpy"
}
        
Elapsed time: 1.30531s