<h1 align="center">OmniRegress </h1>
<p align="center"><b>The fast, modern Python & Rust library for all your regression adventures.</b></p>
OmniRegress: A comprehensive Python & Rust library for all types of regression analysis.
## ๐ Update: 4.0.0 Release!
โจ **Brand New:**
- ๐ฆ **Ridge Regression (L2)** โ Rust implementation with L2 regularization to reduce overfitting and handle multicollinearity
- ๐ฆ **Lasso Regression (L1)** โ Rust implementation with L1 regularization for automatic feature selection and sparse solutions
### ๐ต **Basic Regression Models**
- [โ
] **Linear Regression** โ Fast, pure Rust core. ([Usage ๐](docs/Usage/LinearRegression.md))
- [โ
] **Polynomial Regression** โ Nonlinear fits, Rust-powered. ([Usage ๐](docs/Usage/PolynomialRegression.md))
- [โ
] **Logistic Regression** โ Native Rust, robust binary classification. ([Usage ๐](docs/Usage/LogisticRegression.md))
- [โ
] **Ridge Regression (L2)** โ ๐ก๏ธ Regularization to prevent overfitting.([Usage ๐](docs/Usage/RidgeRegression.md))
- [โ
] **Lasso Regression (L1)** โ โ๏ธ Feature selection with L1 penalty.([Usage ๐](docs/Usage/LassoRegression.md))
- [๐ง] **Elastic Net** โ ๐งฌ Hybrid L1 + L2 regularization.
---
### ๐ข **Specialized Regression**
- [ ] **Poisson Regression** โ ๐ For count data (e.g., website visits).
- [ ] **Cox Regression** โ โณ Survival/time-to-event analysis.
- [ ] **Quantile Regression** โ ๐ฏ Predicts specific percentiles (e.g., median).
- [ ] **Bayesian Regression** โ ๐ฒ Incorporates prior distributions.
---
### ๐ **Nonlinear & ML-Based**
- [ ] **Support Vector Regression (SVR)** โ ๐ Kernel magic for complex patterns.
- [ ] **Decision Tree Regression** โ ๐ณ Hierarchical, rule-based splits.
- [ ] **Random Forest Regression** โ ๐ฒ๐ฒ Ensemble of decision trees.
- [ ] **Neural Network Regression** โ ๐ง Deep learning for high-dimensional data.
---
### ๐ฃ **Other Advanced Types**
- [ ] **Gaussian Process Regression** โ ๐ฎ Probabilistic nonlinear modeling.
- [ ] **Negative Binomial Regression** โ ๐งฎ Overdispersed count data.
- [ ] **Multinomial Logistic Regression** โ ๐ท๏ธ Multi-class classification.
## ๐งช Testing
See the test suite: [OmniRegress\_test](https://github.com/42Wor/OmniRegress_test)
Raw data
{
"_id": null,
"home_page": null,
"name": "omniregress",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "regression, machine learning, statistics, data analysis, python, omni, omniregress",
"author": null,
"author_email": "\"Maaz.waheed\" <wwork4287@gmail.com>",
"download_url": null,
"platform": null,
"description": "<h1 align=\"center\">OmniRegress </h1>\n<p align=\"center\"><b>The fast, modern Python & Rust library for all your regression adventures.</b></p>\n\nOmniRegress: A comprehensive Python & Rust library for all types of regression analysis.\n\n## \ud83d\ude80 Update: 4.0.0 Release!\n\n\u2728 **Brand New:** \n- \ud83e\udd80 **Ridge Regression (L2)** \u2014 Rust implementation with L2 regularization to reduce overfitting and handle multicollinearity\n- \ud83e\udd80 **Lasso Regression (L1)** \u2014 Rust implementation with L1 regularization for automatic feature selection and sparse solutions\n\n### \ud83d\udd35 **Basic Regression Models** \n- [\u2705] **Linear Regression** \u2014 Fast, pure Rust core. ([Usage \ud83d\ude80](docs/Usage/LinearRegression.md))\n- [\u2705] **Polynomial Regression** \u2014 Nonlinear fits, Rust-powered. ([Usage \ud83d\ude80](docs/Usage/PolynomialRegression.md))\n- [\u2705] **Logistic Regression** \u2014 Native Rust, robust binary classification. ([Usage \ud83d\ude80](docs/Usage/LogisticRegression.md))\n- [\u2705] **Ridge Regression (L2)** \u2014 \ud83d\udee1\ufe0f Regularization to prevent overfitting.([Usage \ud83d\ude80](docs/Usage/RidgeRegression.md))\n- [\u2705] **Lasso Regression (L1)** \u2014 \u2702\ufe0f Feature selection with L1 penalty.([Usage \ud83d\ude80](docs/Usage/LassoRegression.md))\n- [\ud83d\udea7] **Elastic Net** \u2014 \ud83e\uddec Hybrid L1 + L2 regularization.\n\n---\n\n### \ud83d\udfe2 **Specialized Regression** \n- [ ] **Poisson Regression** \u2014 \ud83d\udcc8 For count data (e.g., website visits).\n- [ ] **Cox Regression** \u2014 \u23f3 Survival/time-to-event analysis.\n- [ ] **Quantile Regression** \u2014 \ud83c\udfaf Predicts specific percentiles (e.g., median).\n- [ ] **Bayesian Regression** \u2014 \ud83c\udfb2 Incorporates prior distributions.\n\n---\n\n### \ud83d\udfe0 **Nonlinear & ML-Based** \n- [ ] **Support Vector Regression (SVR)** \u2014 \ud83c\udf00 Kernel magic for complex patterns.\n- [ ] **Decision Tree Regression** \u2014 \ud83c\udf33 Hierarchical, rule-based splits.\n- [ ] **Random Forest Regression** \u2014 \ud83c\udf32\ud83c\udf32 Ensemble of decision trees.\n- [ ] **Neural Network Regression** \u2014 \ud83e\udde0 Deep learning for high-dimensional data.\n\n---\n\n### \ud83d\udfe3 **Other Advanced Types** \n- [ ] **Gaussian Process Regression** \u2014 \ud83d\udd2e Probabilistic nonlinear modeling.\n- [ ] **Negative Binomial Regression** \u2014 \ud83e\uddee Overdispersed count data.\n- [ ] **Multinomial Logistic Regression** \u2014 \ud83c\udff7\ufe0f Multi-class classification.\n\n## \ud83e\uddea Testing\n\nSee the test suite: [OmniRegress\\_test](https://github.com/42Wor/OmniRegress_test)\n",
"bugtrack_url": null,
"license": "MPL-2.0",
"summary": "OmniRegress: A comprehensive Python library for all types of regression analysis.",
"version": "4.1.1",
"project_urls": {
"Homepage": "https://github.com/42Wor/omniregress",
"Repository": "https://github.com/42Wor/omniregress"
},
"split_keywords": [
"regression",
" machine learning",
" statistics",
" data analysis",
" python",
" omni",
" omniregress"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "a42756b1511f4da66a4e9fb0ac6d84bb2037d2edd3b0bf2a9d5b94af14c388a8",
"md5": "0f3153b467d513f53383b0d1302f32ed",
"sha256": "7001c41799bb68a6212bf14d2f34aa0db45107ea7913b08b341d1927af2b10de"
},
"downloads": -1,
"filename": "omniregress-4.1.1-cp312-cp312-manylinux_2_34_x86_64.whl",
"has_sig": false,
"md5_digest": "0f3153b467d513f53383b0d1302f32ed",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 310808,
"upload_time": "2025-10-18T09:13:26",
"upload_time_iso_8601": "2025-10-18T09:13:26.839563Z",
"url": "https://files.pythonhosted.org/packages/a4/27/56b1511f4da66a4e9fb0ac6d84bb2037d2edd3b0bf2a9d5b94af14c388a8/omniregress-4.1.1-cp312-cp312-manylinux_2_34_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6a6f1e9d757c756a53957d1bce7430f57f8ad865ab5295f5b14a130e81e53237",
"md5": "c75f0d6605a3adc0a555f8b5eabaa335",
"sha256": "1c2011f962bb0608ddd139d7a908d1afa37858ae41a7a6c008211a2d3c1c789c"
},
"downloads": -1,
"filename": "omniregress-4.1.1-cp313-cp313-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "c75f0d6605a3adc0a555f8b5eabaa335",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 265964,
"upload_time": "2025-10-18T09:13:28",
"upload_time_iso_8601": "2025-10-18T09:13:28.324402Z",
"url": "https://files.pythonhosted.org/packages/6a/6f/1e9d757c756a53957d1bce7430f57f8ad865ab5295f5b14a130e81e53237/omniregress-4.1.1-cp313-cp313-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7cde4fc017b0a565cc4b8e2d00b2d860424dec49a59b5130874ecbd14f1c343e",
"md5": "b25bfdfa0c88b94bd6aa996c6f26bc95",
"sha256": "ec876f9725948ad76e42d6848ed4c8265a1db7055c21800d2ded98b814262044"
},
"downloads": -1,
"filename": "omniregress-4.1.1-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "b25bfdfa0c88b94bd6aa996c6f26bc95",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 167681,
"upload_time": "2025-10-18T09:13:29",
"upload_time_iso_8601": "2025-10-18T09:13:29.757038Z",
"url": "https://files.pythonhosted.org/packages/7c/de/4fc017b0a565cc4b8e2d00b2d860424dec49a59b5130874ecbd14f1c343e/omniregress-4.1.1-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-18 09:13:26",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "42Wor",
"github_project": "omniregress",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "numpy",
"specs": [
[
">=",
"1.21"
]
]
}
],
"lcname": "omniregress"
}