omniregress


Nameomniregress JSON
Version 4.1.1 PyPI version JSON
download
home_pageNone
SummaryOmniRegress: A comprehensive Python library for all types of regression analysis.
upload_time2025-10-18 09:13:26
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMPL-2.0
keywords regression machine learning statistics data analysis python omni omniregress
VCS
bugtrack_url
requirements numpy
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="center">OmniRegress </h1>
<p align="center"><b>The fast, modern Python & Rust library for all your regression adventures.</b></p>

OmniRegress: A comprehensive Python & Rust library for all types of regression analysis.

## ๐Ÿš€ Update: 4.0.0 Release!

โœจ **Brand New:**  
- ๐Ÿฆ€ **Ridge Regression (L2)** โ€” Rust implementation with L2 regularization to reduce overfitting and handle multicollinearity
- ๐Ÿฆ€ **Lasso Regression (L1)** โ€” Rust implementation with L1 regularization for automatic feature selection and sparse solutions

### ๐Ÿ”ต **Basic Regression Models**  
- [โœ…] **Linear Regression** โ€” Fast, pure Rust core. ([Usage ๐Ÿš€](docs/Usage/LinearRegression.md))
- [โœ…] **Polynomial Regression** โ€” Nonlinear fits, Rust-powered. ([Usage ๐Ÿš€](docs/Usage/PolynomialRegression.md))
- [โœ…] **Logistic Regression** โ€” Native Rust, robust binary classification. ([Usage ๐Ÿš€](docs/Usage/LogisticRegression.md))
- [โœ…] **Ridge Regression (L2)** โ€” ๐Ÿ›ก๏ธ Regularization to prevent overfitting.([Usage ๐Ÿš€](docs/Usage/RidgeRegression.md))
- [โœ…] **Lasso Regression (L1)** โ€” โœ‚๏ธ Feature selection with L1 penalty.([Usage ๐Ÿš€](docs/Usage/LassoRegression.md))
- [๐Ÿšง] **Elastic Net** โ€” ๐Ÿงฌ Hybrid L1 + L2 regularization.

---

### ๐ŸŸข **Specialized Regression**  
- [ ] **Poisson Regression** โ€” ๐Ÿ“ˆ For count data (e.g., website visits).
- [ ] **Cox Regression** โ€” โณ Survival/time-to-event analysis.
- [ ] **Quantile Regression** โ€” ๐ŸŽฏ Predicts specific percentiles (e.g., median).
- [ ] **Bayesian Regression** โ€” ๐ŸŽฒ Incorporates prior distributions.

---

### ๐ŸŸ  **Nonlinear & ML-Based**  
- [ ] **Support Vector Regression (SVR)** โ€” ๐ŸŒ€ Kernel magic for complex patterns.
- [ ] **Decision Tree Regression** โ€” ๐ŸŒณ Hierarchical, rule-based splits.
- [ ] **Random Forest Regression** โ€” ๐ŸŒฒ๐ŸŒฒ Ensemble of decision trees.
- [ ] **Neural Network Regression** โ€” ๐Ÿง  Deep learning for high-dimensional data.

---

### ๐ŸŸฃ **Other Advanced Types**  
- [ ] **Gaussian Process Regression** โ€” ๐Ÿ”ฎ Probabilistic nonlinear modeling.
- [ ] **Negative Binomial Regression** โ€” ๐Ÿงฎ Overdispersed count data.
- [ ] **Multinomial Logistic Regression** โ€” ๐Ÿท๏ธ Multi-class classification.

## ๐Ÿงช Testing

See the test suite: [OmniRegress\_test](https://github.com/42Wor/OmniRegress_test)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "omniregress",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "regression, machine learning, statistics, data analysis, python, omni, omniregress",
    "author": null,
    "author_email": "\"Maaz.waheed\" <wwork4287@gmail.com>",
    "download_url": null,
    "platform": null,
    "description": "<h1 align=\"center\">OmniRegress </h1>\n<p align=\"center\"><b>The fast, modern Python & Rust library for all your regression adventures.</b></p>\n\nOmniRegress: A comprehensive Python & Rust library for all types of regression analysis.\n\n## \ud83d\ude80 Update: 4.0.0 Release!\n\n\u2728 **Brand New:**  \n- \ud83e\udd80 **Ridge Regression (L2)** \u2014 Rust implementation with L2 regularization to reduce overfitting and handle multicollinearity\n- \ud83e\udd80 **Lasso Regression (L1)** \u2014 Rust implementation with L1 regularization for automatic feature selection and sparse solutions\n\n### \ud83d\udd35 **Basic Regression Models**  \n- [\u2705] **Linear Regression** \u2014 Fast, pure Rust core. ([Usage \ud83d\ude80](docs/Usage/LinearRegression.md))\n- [\u2705] **Polynomial Regression** \u2014 Nonlinear fits, Rust-powered. ([Usage \ud83d\ude80](docs/Usage/PolynomialRegression.md))\n- [\u2705] **Logistic Regression** \u2014 Native Rust, robust binary classification. ([Usage \ud83d\ude80](docs/Usage/LogisticRegression.md))\n- [\u2705] **Ridge Regression (L2)** \u2014 \ud83d\udee1\ufe0f Regularization to prevent overfitting.([Usage \ud83d\ude80](docs/Usage/RidgeRegression.md))\n- [\u2705] **Lasso Regression (L1)** \u2014 \u2702\ufe0f Feature selection with L1 penalty.([Usage \ud83d\ude80](docs/Usage/LassoRegression.md))\n- [\ud83d\udea7] **Elastic Net** \u2014 \ud83e\uddec Hybrid L1 + L2 regularization.\n\n---\n\n### \ud83d\udfe2 **Specialized Regression**  \n- [ ] **Poisson Regression** \u2014 \ud83d\udcc8 For count data (e.g., website visits).\n- [ ] **Cox Regression** \u2014 \u23f3 Survival/time-to-event analysis.\n- [ ] **Quantile Regression** \u2014 \ud83c\udfaf Predicts specific percentiles (e.g., median).\n- [ ] **Bayesian Regression** \u2014 \ud83c\udfb2 Incorporates prior distributions.\n\n---\n\n### \ud83d\udfe0 **Nonlinear & ML-Based**  \n- [ ] **Support Vector Regression (SVR)** \u2014 \ud83c\udf00 Kernel magic for complex patterns.\n- [ ] **Decision Tree Regression** \u2014 \ud83c\udf33 Hierarchical, rule-based splits.\n- [ ] **Random Forest Regression** \u2014 \ud83c\udf32\ud83c\udf32 Ensemble of decision trees.\n- [ ] **Neural Network Regression** \u2014 \ud83e\udde0 Deep learning for high-dimensional data.\n\n---\n\n### \ud83d\udfe3 **Other Advanced Types**  \n- [ ] **Gaussian Process Regression** \u2014 \ud83d\udd2e Probabilistic nonlinear modeling.\n- [ ] **Negative Binomial Regression** \u2014 \ud83e\uddee Overdispersed count data.\n- [ ] **Multinomial Logistic Regression** \u2014 \ud83c\udff7\ufe0f Multi-class classification.\n\n## \ud83e\uddea Testing\n\nSee the test suite: [OmniRegress\\_test](https://github.com/42Wor/OmniRegress_test)\n",
    "bugtrack_url": null,
    "license": "MPL-2.0",
    "summary": "OmniRegress: A comprehensive Python library for all types of regression analysis.",
    "version": "4.1.1",
    "project_urls": {
        "Homepage": "https://github.com/42Wor/omniregress",
        "Repository": "https://github.com/42Wor/omniregress"
    },
    "split_keywords": [
        "regression",
        " machine learning",
        " statistics",
        " data analysis",
        " python",
        " omni",
        " omniregress"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a42756b1511f4da66a4e9fb0ac6d84bb2037d2edd3b0bf2a9d5b94af14c388a8",
                "md5": "0f3153b467d513f53383b0d1302f32ed",
                "sha256": "7001c41799bb68a6212bf14d2f34aa0db45107ea7913b08b341d1927af2b10de"
            },
            "downloads": -1,
            "filename": "omniregress-4.1.1-cp312-cp312-manylinux_2_34_x86_64.whl",
            "has_sig": false,
            "md5_digest": "0f3153b467d513f53383b0d1302f32ed",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.8",
            "size": 310808,
            "upload_time": "2025-10-18T09:13:26",
            "upload_time_iso_8601": "2025-10-18T09:13:26.839563Z",
            "url": "https://files.pythonhosted.org/packages/a4/27/56b1511f4da66a4e9fb0ac6d84bb2037d2edd3b0bf2a9d5b94af14c388a8/omniregress-4.1.1-cp312-cp312-manylinux_2_34_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6a6f1e9d757c756a53957d1bce7430f57f8ad865ab5295f5b14a130e81e53237",
                "md5": "c75f0d6605a3adc0a555f8b5eabaa335",
                "sha256": "1c2011f962bb0608ddd139d7a908d1afa37858ae41a7a6c008211a2d3c1c789c"
            },
            "downloads": -1,
            "filename": "omniregress-4.1.1-cp313-cp313-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "c75f0d6605a3adc0a555f8b5eabaa335",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.8",
            "size": 265964,
            "upload_time": "2025-10-18T09:13:28",
            "upload_time_iso_8601": "2025-10-18T09:13:28.324402Z",
            "url": "https://files.pythonhosted.org/packages/6a/6f/1e9d757c756a53957d1bce7430f57f8ad865ab5295f5b14a130e81e53237/omniregress-4.1.1-cp313-cp313-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7cde4fc017b0a565cc4b8e2d00b2d860424dec49a59b5130874ecbd14f1c343e",
                "md5": "b25bfdfa0c88b94bd6aa996c6f26bc95",
                "sha256": "ec876f9725948ad76e42d6848ed4c8265a1db7055c21800d2ded98b814262044"
            },
            "downloads": -1,
            "filename": "omniregress-4.1.1-cp39-cp39-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "b25bfdfa0c88b94bd6aa996c6f26bc95",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.8",
            "size": 167681,
            "upload_time": "2025-10-18T09:13:29",
            "upload_time_iso_8601": "2025-10-18T09:13:29.757038Z",
            "url": "https://files.pythonhosted.org/packages/7c/de/4fc017b0a565cc4b8e2d00b2d860424dec49a59b5130874ecbd14f1c343e/omniregress-4.1.1-cp39-cp39-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-18 09:13:26",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "42Wor",
    "github_project": "omniregress",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.21"
                ]
            ]
        }
    ],
    "lcname": "omniregress"
}
        
Elapsed time: 1.97634s