openCFR


NameopenCFR JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/stockhamrexa/OpenCFR
SummaryA Python implementation of Counterfactual Regret Minimization (CFR).
upload_time2022-11-30 04:14:40
maintainer
docs_urlNone
authorRex Stockham
requires_python>=3.7
licenseMIT
keywords cfr cfr+ cfr plus chance sampling counterfactual regret minimization game tree heads-up no-limit imperfect information kuhn mccfr monte carlo counterfactual regret minimization nash equilibrium outcome sampling poker python regret based pruning rock-paper-scissors texas hold-em zero sum
VCS
bugtrack_url
requirements numpy tqdm
Travis-CI No Travis.
coveralls test coverage No coveralls.
            A Python library for building the game trees of zero-sum imperfect information games and solving for their Nash equilibrium using Counterfactual Regret Minimization (CFR).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/stockhamrexa/OpenCFR",
    "name": "openCFR",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "CFR,CFR+,CFR plus,chance sampling,Counterfactual Regret Minimization,game tree,heads-up no-limit,imperfect information,Kuhn,MCCFR,Monte Carlo Counterfactual Regret Minimization,Nash equilibrium,outcome sampling,poker,Python,regret based pruning,rock-paper-scissors,Texas Hold-Em,zero sum",
    "author": "Rex Stockham",
    "author_email": "rexstockham13@gmail.com",
    "download_url": "",
    "platform": null,
    "description": "A Python library for building the game trees of zero-sum imperfect information games and solving for their Nash equilibrium using Counterfactual Regret Minimization (CFR).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python implementation of Counterfactual Regret Minimization (CFR).",
    "version": "1.0.0",
    "split_keywords": [
        "cfr",
        "cfr+",
        "cfr plus",
        "chance sampling",
        "counterfactual regret minimization",
        "game tree",
        "heads-up no-limit",
        "imperfect information",
        "kuhn",
        "mccfr",
        "monte carlo counterfactual regret minimization",
        "nash equilibrium",
        "outcome sampling",
        "poker",
        "python",
        "regret based pruning",
        "rock-paper-scissors",
        "texas hold-em",
        "zero sum"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "23e49390bd60bc78f7418a4f6bd14a91",
                "sha256": "052cb10b279f5a9846b64c0c7406623386d59bbe5d9ee3d4de029fd1fc1ed1e3"
            },
            "downloads": -1,
            "filename": "openCFR-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "23e49390bd60bc78f7418a4f6bd14a91",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 3640233,
            "upload_time": "2022-11-30T04:14:40",
            "upload_time_iso_8601": "2022-11-30T04:14:40.933151Z",
            "url": "https://files.pythonhosted.org/packages/70/3b/a42223b5589134f33a9a155989a7bf980d6d8021e460774a79aa3cf38478/openCFR-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-11-30 04:14:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "stockhamrexa",
    "github_project": "OpenCFR",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.23.0"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    ">=",
                    "4.57.0"
                ]
            ]
        }
    ],
    "lcname": "opencfr"
}
        
Elapsed time: 0.01517s