# Patatas
[https://pypi.org/project/patatas/](https://pypi.org/project/patatas/)
Patatas is a Python package that provides tools for preprocessing and modeling data using machine learning algorithms.
## Installation
You can install Patatas using pip:
pip install patatas
## Installation
### Usage
Encoding categorical columns
To encode all categorical (object) columns of a pandas DataFrame using Label Encoding, you can use the fritas() function:
```bash
from patatas import fritas
import pandas as pd
# Create a sample DataFrame with categorical columns
df = pd.DataFrame({'Color': ['Red', 'Green', 'Blue'], 'Size': ['Small', 'Medium', 'Large']})
# Encode categorical columns using Label Encoding
df_encoded = fritas(df)
# Show the encoded DataFrame
print(df_encoded)
```
Finding the best value of k for K-NN regression
To find the best value of k (number of neighbors) for K-NN regression based on the mean squared error, you can use the bravas() function:
```bash
from patatas import bravas
import pandas as pd
# Load a sample dataset
df = pd.read_csv('my_dataset.csv')
# Find the best value of k for K-NN regression
best_k = bravas(df, 'target_column')
print(f'The best value of k is {best_k}')
Contributing
Contributions to Patata Poderosa are welcome! To contribute, please follow these steps:
```
Fork the repository and create a new branch for your feature or bug fix.
Write tests for your changes.
Implement your feature or bug fix.
Run the tests and ensure they pass.
Submit a pull request.
License
Patatas is released under the MIT License. See the LICENSE file for more details.
Raw data
{
"_id": null,
"home_page": "https://github.com/PatataTeam/patata-poderosa",
"name": "patatas",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "data preprocessing knn regression analysis data science scikit-learn pandas",
"author": "Patata Team",
"author_email": "demstalfer@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/5c/24/135e546543c6b43b740d5812fbec717747b53799a29c8af287e49d392115/patatas-0.1.1.tar.gz",
"platform": null,
"description": "# Patatas \r\n\r\n[https://pypi.org/project/patatas/](https://pypi.org/project/patatas/)\r\n\r\n\r\nPatatas is a Python package that provides tools for preprocessing and modeling data using machine learning algorithms.\r\n\r\n## Installation\r\n\r\nYou can install Patatas using pip:\r\n\r\npip install patatas\r\n\r\n\r\n## Installation\r\n\r\n### Usage\r\nEncoding categorical columns\r\nTo encode all categorical (object) columns of a pandas DataFrame using Label Encoding, you can use the fritas() function:\r\n```bash\r\n\r\nfrom patatas import fritas\r\nimport pandas as pd\r\n\r\n# Create a sample DataFrame with categorical columns\r\ndf = pd.DataFrame({'Color': ['Red', 'Green', 'Blue'], 'Size': ['Small', 'Medium', 'Large']})\r\n\r\n# Encode categorical columns using Label Encoding\r\ndf_encoded = fritas(df)\r\n\r\n# Show the encoded DataFrame\r\nprint(df_encoded)\r\n```\r\n\r\n\r\nFinding the best value of k for K-NN regression\r\nTo find the best value of k (number of neighbors) for K-NN regression based on the mean squared error, you can use the bravas() function:\r\n\r\n\r\n```bash\r\nfrom patatas import bravas\r\nimport pandas as pd\r\n\r\n# Load a sample dataset\r\ndf = pd.read_csv('my_dataset.csv')\r\n\r\n# Find the best value of k for K-NN regression\r\nbest_k = bravas(df, 'target_column')\r\nprint(f'The best value of k is {best_k}')\r\nContributing\r\nContributions to Patata Poderosa are welcome! To contribute, please follow these steps:\r\n```\r\n\r\nFork the repository and create a new branch for your feature or bug fix.\r\nWrite tests for your changes.\r\nImplement your feature or bug fix.\r\nRun the tests and ensure they pass.\r\nSubmit a pull request.\r\nLicense\r\nPatatas is released under the MIT License. See the LICENSE file for more details.\r\n\r\n\r\n\r\n",
"bugtrack_url": null,
"license": "",
"summary": "A powerful package for K-NN regression, data preprocessing, and analysis for Data Science",
"version": "0.1.1",
"split_keywords": [
"data",
"preprocessing",
"knn",
"regression",
"analysis",
"data",
"science",
"scikit-learn",
"pandas"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7b4bdd9939378b0cc5f8ed8eab08b27aab605870ad691dffe24e6c6815d18785",
"md5": "b7b6292b2f4d8cf659251d8a7abd44ba",
"sha256": "e75b7d00cf92d612560ce3c7049ddaf4aadd75f90fe5b458a6fca809292df298"
},
"downloads": -1,
"filename": "patatas-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b7b6292b2f4d8cf659251d8a7abd44ba",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 4261,
"upload_time": "2023-03-27T10:09:51",
"upload_time_iso_8601": "2023-03-27T10:09:51.587312Z",
"url": "https://files.pythonhosted.org/packages/7b/4b/dd9939378b0cc5f8ed8eab08b27aab605870ad691dffe24e6c6815d18785/patatas-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5c24135e546543c6b43b740d5812fbec717747b53799a29c8af287e49d392115",
"md5": "25816c8801193b82945b765e12c27eae",
"sha256": "846cb1627c5ff8416384a8a73097c291c1db1781f9fd9b776f3806fc0f9ace32"
},
"downloads": -1,
"filename": "patatas-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "25816c8801193b82945b765e12c27eae",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4386,
"upload_time": "2023-03-27T10:09:54",
"upload_time_iso_8601": "2023-03-27T10:09:54.651636Z",
"url": "https://files.pythonhosted.org/packages/5c/24/135e546543c6b43b740d5812fbec717747b53799a29c8af287e49d392115/patatas-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-27 10:09:54",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "PatataTeam",
"github_project": "patata-poderosa",
"lcname": "patatas"
}