patatas


Namepatatas JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/PatataTeam/patata-poderosa
SummaryA powerful package for K-NN regression, data preprocessing, and analysis for Data Science
upload_time2023-03-27 10:09:54
maintainer
docs_urlNone
authorPatata Team
requires_python
license
keywords data preprocessing knn regression analysis data science scikit-learn pandas
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Patatas 

[https://pypi.org/project/patatas/](https://pypi.org/project/patatas/)


Patatas is a Python package that provides tools for preprocessing and modeling data using machine learning algorithms.

## Installation

You can install Patatas using pip:

pip install patatas


## Installation

### Usage
Encoding categorical columns
To encode all categorical (object) columns of a pandas DataFrame using Label Encoding, you can use the fritas() function:
```bash

from patatas import fritas
import pandas as pd

# Create a sample DataFrame with categorical columns
df = pd.DataFrame({'Color': ['Red', 'Green', 'Blue'], 'Size': ['Small', 'Medium', 'Large']})

# Encode categorical columns using Label Encoding
df_encoded = fritas(df)

# Show the encoded DataFrame
print(df_encoded)
```


Finding the best value of k for K-NN regression
To find the best value of k (number of neighbors) for K-NN regression based on the mean squared error, you can use the bravas() function:


```bash
from patatas import bravas
import pandas as pd

# Load a sample dataset
df = pd.read_csv('my_dataset.csv')

# Find the best value of k for K-NN regression
best_k = bravas(df, 'target_column')
print(f'The best value of k is {best_k}')
Contributing
Contributions to Patata Poderosa are welcome! To contribute, please follow these steps:
```

Fork the repository and create a new branch for your feature or bug fix.
Write tests for your changes.
Implement your feature or bug fix.
Run the tests and ensure they pass.
Submit a pull request.
License
Patatas is released under the MIT License. See the LICENSE file for more details.




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/PatataTeam/patata-poderosa",
    "name": "patatas",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "data preprocessing knn regression analysis data science scikit-learn pandas",
    "author": "Patata Team",
    "author_email": "demstalfer@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/5c/24/135e546543c6b43b740d5812fbec717747b53799a29c8af287e49d392115/patatas-0.1.1.tar.gz",
    "platform": null,
    "description": "# Patatas \r\n\r\n[https://pypi.org/project/patatas/](https://pypi.org/project/patatas/)\r\n\r\n\r\nPatatas is a Python package that provides tools for preprocessing and modeling data using machine learning algorithms.\r\n\r\n## Installation\r\n\r\nYou can install Patatas using pip:\r\n\r\npip install patatas\r\n\r\n\r\n## Installation\r\n\r\n### Usage\r\nEncoding categorical columns\r\nTo encode all categorical (object) columns of a pandas DataFrame using Label Encoding, you can use the fritas() function:\r\n```bash\r\n\r\nfrom patatas import fritas\r\nimport pandas as pd\r\n\r\n# Create a sample DataFrame with categorical columns\r\ndf = pd.DataFrame({'Color': ['Red', 'Green', 'Blue'], 'Size': ['Small', 'Medium', 'Large']})\r\n\r\n# Encode categorical columns using Label Encoding\r\ndf_encoded = fritas(df)\r\n\r\n# Show the encoded DataFrame\r\nprint(df_encoded)\r\n```\r\n\r\n\r\nFinding the best value of k for K-NN regression\r\nTo find the best value of k (number of neighbors) for K-NN regression based on the mean squared error, you can use the bravas() function:\r\n\r\n\r\n```bash\r\nfrom patatas import bravas\r\nimport pandas as pd\r\n\r\n# Load a sample dataset\r\ndf = pd.read_csv('my_dataset.csv')\r\n\r\n# Find the best value of k for K-NN regression\r\nbest_k = bravas(df, 'target_column')\r\nprint(f'The best value of k is {best_k}')\r\nContributing\r\nContributions to Patata Poderosa are welcome! To contribute, please follow these steps:\r\n```\r\n\r\nFork the repository and create a new branch for your feature or bug fix.\r\nWrite tests for your changes.\r\nImplement your feature or bug fix.\r\nRun the tests and ensure they pass.\r\nSubmit a pull request.\r\nLicense\r\nPatatas is released under the MIT License. See the LICENSE file for more details.\r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A powerful package for K-NN regression, data preprocessing, and analysis for Data Science",
    "version": "0.1.1",
    "split_keywords": [
        "data",
        "preprocessing",
        "knn",
        "regression",
        "analysis",
        "data",
        "science",
        "scikit-learn",
        "pandas"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7b4bdd9939378b0cc5f8ed8eab08b27aab605870ad691dffe24e6c6815d18785",
                "md5": "b7b6292b2f4d8cf659251d8a7abd44ba",
                "sha256": "e75b7d00cf92d612560ce3c7049ddaf4aadd75f90fe5b458a6fca809292df298"
            },
            "downloads": -1,
            "filename": "patatas-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b7b6292b2f4d8cf659251d8a7abd44ba",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4261,
            "upload_time": "2023-03-27T10:09:51",
            "upload_time_iso_8601": "2023-03-27T10:09:51.587312Z",
            "url": "https://files.pythonhosted.org/packages/7b/4b/dd9939378b0cc5f8ed8eab08b27aab605870ad691dffe24e6c6815d18785/patatas-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5c24135e546543c6b43b740d5812fbec717747b53799a29c8af287e49d392115",
                "md5": "25816c8801193b82945b765e12c27eae",
                "sha256": "846cb1627c5ff8416384a8a73097c291c1db1781f9fd9b776f3806fc0f9ace32"
            },
            "downloads": -1,
            "filename": "patatas-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "25816c8801193b82945b765e12c27eae",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4386,
            "upload_time": "2023-03-27T10:09:54",
            "upload_time_iso_8601": "2023-03-27T10:09:54.651636Z",
            "url": "https://files.pythonhosted.org/packages/5c/24/135e546543c6b43b740d5812fbec717747b53799a29c8af287e49d392115/patatas-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-27 10:09:54",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "PatataTeam",
    "github_project": "patata-poderosa",
    "lcname": "patatas"
}
        
Elapsed time: 0.66569s