# pcts
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
## Developer Guide
### Setup
``` sh
# create conda environment
$ mamba env create -f env.yml
# update conda environment
$ mamba env update -n pcts --file env.yml
```
### Install
``` sh
pip install -e .
# install from pypi
pip install pcts
```
### nbdev
``` sh
# activate conda environment
$ conda activate pcts
# make sure the pcts package is installed in development mode
$ pip install -e .
# make changes under nbs/ directory
# ...
# compile to have changes apply to the pcts package
$ nbdev_prepare
```
### Publishing
``` sh
# publish to pypi
$ nbdev_pypi
# publish to conda
$ nbdev_conda --build_args '-c conda-forge'
$ nbdev_conda --mambabuild --build_args '-c conda-forge -c dsm-72'
```
# Usage
## Installation
Install latest from the GitHub
[repository](https://github.com/dsm-72/pcts):
``` sh
$ pip install git+https://github.com/dsm-72/pcts.git
```
or from [conda](https://anaconda.org/dsm-72/pcts)
``` sh
$ conda install -c dsm-72 pcts
```
or from [pypi](https://pypi.org/project/pcts/)
``` sh
$ pip install pcts
```
## Documentation
Documentation can be found hosted on GitHub
[repository](https://github.com/dsm-72/pcts)
[pages](https://dsm-72.github.io/pcts/). Additionally you can find
package manager specific guidelines on
[conda](https://anaconda.org/dsm-72/pcts) and
[pypi](https://pypi.org/project/pcts/) respectively.
## NumPy Documentation:
- [`np.DataSource`](https://numpy.org/doc/stable/reference/generated/numpy.DataSource.html)
## PyTorch Documentation:
- [`TorchData`](https://pytorch.org/data/beta/index.html)
- [How to Package PyTorch
Models](https://pytorch.org/docs/stable/package.html)
- [`torch.monitor.Event`](https://pytorch.org/docs/stable/monitor.html#torch.monitor.Event)
- [`torchvision`](https://pytorch.org/vision/stable/index.html)
- [`torchvision.Datasets.VisionDataset`](https://pytorch.org/vision/stable/generated/torchvision.datasets.VisionDataset.html#torchvision.datasets.VisionDataset)
- [`torchvision.utils.flow_to_image`](https://pytorch.org/vision/stable/generated/torchvision.utils.flow_to_image.html)
## PyTorch Models to Consider:
- [Diffusion Video
AutoEncoders](https://github.com/man805/Diffusion-Video-Autoencoders)
- [ConvLSTM
AutoEncoder](https://holmdk.github.io/2020/04/02/video_prediction.html)
- [Recurrent All Pairs Field Transforms for Optical
Flow](https://github.com/princeton-vl/RAFT/blob/master/core/raft.py)
- [Optical Flow Toolbox
(`mmflow`)](https://github.com/open-mmlab/mmflow/blob/master/docs/en/intro.md)
- [`torchvision.models.optical_flow.raft`](https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py)
Raw data
{
"_id": null,
"home_page": "https://github.com/dsm-72/pcts",
"name": "pcts",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": null,
"keywords": "utility for pytorch torch util pcts",
"author": "dsm-72",
"author_email": "sumner.magruder@yale.edu",
"download_url": "https://files.pythonhosted.org/packages/dc/54/099b0e0e66d1a3b8d1597c8ff81103bc92fb32676119f1da5dec2e1af34c/pcts-0.0.3.tar.gz",
"platform": null,
"description": "# pcts\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\n## Developer Guide\n\n### Setup\n\n``` sh\n# create conda environment\n$ mamba env create -f env.yml\n\n# update conda environment\n$ mamba env update -n pcts --file env.yml\n```\n\n### Install\n\n``` sh\npip install -e .\n\n# install from pypi\npip install pcts\n```\n\n### nbdev\n\n``` sh\n# activate conda environment\n$ conda activate pcts\n\n# make sure the pcts package is installed in development mode\n$ pip install -e .\n\n# make changes under nbs/ directory\n# ...\n\n# compile to have changes apply to the pcts package\n$ nbdev_prepare\n```\n\n### Publishing\n\n``` sh\n# publish to pypi\n$ nbdev_pypi\n\n# publish to conda\n$ nbdev_conda --build_args '-c conda-forge'\n$ nbdev_conda --mambabuild --build_args '-c conda-forge -c dsm-72'\n```\n\n# Usage\n\n## Installation\n\nInstall latest from the GitHub\n[repository](https://github.com/dsm-72/pcts):\n\n``` sh\n$ pip install git+https://github.com/dsm-72/pcts.git\n```\n\nor from [conda](https://anaconda.org/dsm-72/pcts)\n\n``` sh\n$ conda install -c dsm-72 pcts\n```\n\nor from [pypi](https://pypi.org/project/pcts/)\n\n``` sh\n$ pip install pcts\n```\n\n## Documentation\n\nDocumentation can be found hosted on GitHub\n[repository](https://github.com/dsm-72/pcts)\n[pages](https://dsm-72.github.io/pcts/). Additionally you can find\npackage manager specific guidelines on\n[conda](https://anaconda.org/dsm-72/pcts) and\n[pypi](https://pypi.org/project/pcts/) respectively.\n\n## NumPy Documentation:\n\n- [`np.DataSource`](https://numpy.org/doc/stable/reference/generated/numpy.DataSource.html)\n\n## PyTorch Documentation:\n\n- [`TorchData`](https://pytorch.org/data/beta/index.html)\n- [How to Package PyTorch\n Models](https://pytorch.org/docs/stable/package.html)\n- [`torch.monitor.Event`](https://pytorch.org/docs/stable/monitor.html#torch.monitor.Event)\n- [`torchvision`](https://pytorch.org/vision/stable/index.html)\n- [`torchvision.Datasets.VisionDataset`](https://pytorch.org/vision/stable/generated/torchvision.datasets.VisionDataset.html#torchvision.datasets.VisionDataset)\n- [`torchvision.utils.flow_to_image`](https://pytorch.org/vision/stable/generated/torchvision.utils.flow_to_image.html)\n\n## PyTorch Models to Consider:\n\n- [Diffusion Video\n AutoEncoders](https://github.com/man805/Diffusion-Video-Autoencoders)\n- [ConvLSTM\n AutoEncoder](https://holmdk.github.io/2020/04/02/video_prediction.html)\n- [Recurrent All Pairs Field Transforms for Optical\n Flow](https://github.com/princeton-vl/RAFT/blob/master/core/raft.py)\n- [Optical Flow Toolbox\n (`mmflow`)](https://github.com/open-mmlab/mmflow/blob/master/docs/en/intro.md)\n- [`torchvision.models.optical_flow.raft`](https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py)\n",
"bugtrack_url": null,
"license": "Apache Software License 2.0",
"summary": "util torch",
"version": "0.0.3",
"project_urls": {
"Homepage": "https://github.com/dsm-72/pcts"
},
"split_keywords": [
"utility",
"for",
"pytorch",
"torch",
"util",
"pcts"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "88944a94ebe171c3b8fe9f58656355dbc295bd18617a3ed7e88f250e817c6a37",
"md5": "ca61003edc92cbfeed4dfccd413627c5",
"sha256": "21dcd7e144fc97e68b8c9d6c01664f942595cd163ae44d5ab0e2691cae74003c"
},
"downloads": -1,
"filename": "pcts-0.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ca61003edc92cbfeed4dfccd413627c5",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 9991,
"upload_time": "2024-04-06T17:39:36",
"upload_time_iso_8601": "2024-04-06T17:39:36.051246Z",
"url": "https://files.pythonhosted.org/packages/88/94/4a94ebe171c3b8fe9f58656355dbc295bd18617a3ed7e88f250e817c6a37/pcts-0.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "dc54099b0e0e66d1a3b8d1597c8ff81103bc92fb32676119f1da5dec2e1af34c",
"md5": "c3ff5d5fd0c41666727d22545adc6b9a",
"sha256": "1ce3ff4c6a8991807df31a10281bcf8ac66a85caa6c32f075b5c7d9afe970f43"
},
"downloads": -1,
"filename": "pcts-0.0.3.tar.gz",
"has_sig": false,
"md5_digest": "c3ff5d5fd0c41666727d22545adc6b9a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 10991,
"upload_time": "2024-04-06T17:39:37",
"upload_time_iso_8601": "2024-04-06T17:39:37.531334Z",
"url": "https://files.pythonhosted.org/packages/dc/54/099b0e0e66d1a3b8d1597c8ff81103bc92fb32676119f1da5dec2e1af34c/pcts-0.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-06 17:39:37",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "dsm-72",
"github_project": "pcts",
"github_not_found": true,
"lcname": "pcts"
}