pcts


Namepcts JSON
Version 0.0.3 PyPI version JSON
download
home_pagehttps://github.com/dsm-72/pcts
Summaryutil torch
upload_time2024-04-06 17:39:37
maintainerNone
docs_urlNone
authordsm-72
requires_python>=3.11
licenseApache Software License 2.0
keywords utility for pytorch torch util pcts
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pcts

<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->

## Developer Guide

### Setup

``` sh
# create conda environment
$ mamba env create -f env.yml

# update conda environment
$ mamba env update -n pcts --file env.yml
```

### Install

``` sh
pip install -e .

# install from pypi
pip install pcts
```

### nbdev

``` sh
# activate conda environment
$ conda activate pcts

# make sure the pcts package is installed in development mode
$ pip install -e .

# make changes under nbs/ directory
# ...

# compile to have changes apply to the pcts package
$ nbdev_prepare
```

### Publishing

``` sh
# publish to pypi
$ nbdev_pypi

# publish to conda
$ nbdev_conda --build_args '-c conda-forge'
$ nbdev_conda --mambabuild --build_args '-c conda-forge -c dsm-72'
```

# Usage

## Installation

Install latest from the GitHub
[repository](https://github.com/dsm-72/pcts):

``` sh
$ pip install git+https://github.com/dsm-72/pcts.git
```

or from [conda](https://anaconda.org/dsm-72/pcts)

``` sh
$ conda install -c dsm-72 pcts
```

or from [pypi](https://pypi.org/project/pcts/)

``` sh
$ pip install pcts
```

## Documentation

Documentation can be found hosted on GitHub
[repository](https://github.com/dsm-72/pcts)
[pages](https://dsm-72.github.io/pcts/). Additionally you can find
package manager specific guidelines on
[conda](https://anaconda.org/dsm-72/pcts) and
[pypi](https://pypi.org/project/pcts/) respectively.

## NumPy Documentation:

- [`np.DataSource`](https://numpy.org/doc/stable/reference/generated/numpy.DataSource.html)

## PyTorch Documentation:

- [`TorchData`](https://pytorch.org/data/beta/index.html)
- [How to Package PyTorch
  Models](https://pytorch.org/docs/stable/package.html)
- [`torch.monitor.Event`](https://pytorch.org/docs/stable/monitor.html#torch.monitor.Event)
- [`torchvision`](https://pytorch.org/vision/stable/index.html)
- [`torchvision.Datasets.VisionDataset`](https://pytorch.org/vision/stable/generated/torchvision.datasets.VisionDataset.html#torchvision.datasets.VisionDataset)
- [`torchvision.utils.flow_to_image`](https://pytorch.org/vision/stable/generated/torchvision.utils.flow_to_image.html)

## PyTorch Models to Consider:

- [Diffusion Video
  AutoEncoders](https://github.com/man805/Diffusion-Video-Autoencoders)
- [ConvLSTM
  AutoEncoder](https://holmdk.github.io/2020/04/02/video_prediction.html)
- [Recurrent All Pairs Field Transforms for Optical
  Flow](https://github.com/princeton-vl/RAFT/blob/master/core/raft.py)
- [Optical Flow Toolbox
  (`mmflow`)](https://github.com/open-mmlab/mmflow/blob/master/docs/en/intro.md)
- [`torchvision.models.optical_flow.raft`](https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/dsm-72/pcts",
    "name": "pcts",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": "utility for pytorch torch util pcts",
    "author": "dsm-72",
    "author_email": "sumner.magruder@yale.edu",
    "download_url": "https://files.pythonhosted.org/packages/dc/54/099b0e0e66d1a3b8d1597c8ff81103bc92fb32676119f1da5dec2e1af34c/pcts-0.0.3.tar.gz",
    "platform": null,
    "description": "# pcts\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\n## Developer Guide\n\n### Setup\n\n``` sh\n# create conda environment\n$ mamba env create -f env.yml\n\n# update conda environment\n$ mamba env update -n pcts --file env.yml\n```\n\n### Install\n\n``` sh\npip install -e .\n\n# install from pypi\npip install pcts\n```\n\n### nbdev\n\n``` sh\n# activate conda environment\n$ conda activate pcts\n\n# make sure the pcts package is installed in development mode\n$ pip install -e .\n\n# make changes under nbs/ directory\n# ...\n\n# compile to have changes apply to the pcts package\n$ nbdev_prepare\n```\n\n### Publishing\n\n``` sh\n# publish to pypi\n$ nbdev_pypi\n\n# publish to conda\n$ nbdev_conda --build_args '-c conda-forge'\n$ nbdev_conda --mambabuild --build_args '-c conda-forge -c dsm-72'\n```\n\n# Usage\n\n## Installation\n\nInstall latest from the GitHub\n[repository](https://github.com/dsm-72/pcts):\n\n``` sh\n$ pip install git+https://github.com/dsm-72/pcts.git\n```\n\nor from [conda](https://anaconda.org/dsm-72/pcts)\n\n``` sh\n$ conda install -c dsm-72 pcts\n```\n\nor from [pypi](https://pypi.org/project/pcts/)\n\n``` sh\n$ pip install pcts\n```\n\n## Documentation\n\nDocumentation can be found hosted on GitHub\n[repository](https://github.com/dsm-72/pcts)\n[pages](https://dsm-72.github.io/pcts/). Additionally you can find\npackage manager specific guidelines on\n[conda](https://anaconda.org/dsm-72/pcts) and\n[pypi](https://pypi.org/project/pcts/) respectively.\n\n## NumPy Documentation:\n\n- [`np.DataSource`](https://numpy.org/doc/stable/reference/generated/numpy.DataSource.html)\n\n## PyTorch Documentation:\n\n- [`TorchData`](https://pytorch.org/data/beta/index.html)\n- [How to Package PyTorch\n  Models](https://pytorch.org/docs/stable/package.html)\n- [`torch.monitor.Event`](https://pytorch.org/docs/stable/monitor.html#torch.monitor.Event)\n- [`torchvision`](https://pytorch.org/vision/stable/index.html)\n- [`torchvision.Datasets.VisionDataset`](https://pytorch.org/vision/stable/generated/torchvision.datasets.VisionDataset.html#torchvision.datasets.VisionDataset)\n- [`torchvision.utils.flow_to_image`](https://pytorch.org/vision/stable/generated/torchvision.utils.flow_to_image.html)\n\n## PyTorch Models to Consider:\n\n- [Diffusion Video\n  AutoEncoders](https://github.com/man805/Diffusion-Video-Autoencoders)\n- [ConvLSTM\n  AutoEncoder](https://holmdk.github.io/2020/04/02/video_prediction.html)\n- [Recurrent All Pairs Field Transforms for Optical\n  Flow](https://github.com/princeton-vl/RAFT/blob/master/core/raft.py)\n- [Optical Flow Toolbox\n  (`mmflow`)](https://github.com/open-mmlab/mmflow/blob/master/docs/en/intro.md)\n- [`torchvision.models.optical_flow.raft`](https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py)\n",
    "bugtrack_url": null,
    "license": "Apache Software License 2.0",
    "summary": "util torch",
    "version": "0.0.3",
    "project_urls": {
        "Homepage": "https://github.com/dsm-72/pcts"
    },
    "split_keywords": [
        "utility",
        "for",
        "pytorch",
        "torch",
        "util",
        "pcts"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "88944a94ebe171c3b8fe9f58656355dbc295bd18617a3ed7e88f250e817c6a37",
                "md5": "ca61003edc92cbfeed4dfccd413627c5",
                "sha256": "21dcd7e144fc97e68b8c9d6c01664f942595cd163ae44d5ab0e2691cae74003c"
            },
            "downloads": -1,
            "filename": "pcts-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ca61003edc92cbfeed4dfccd413627c5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 9991,
            "upload_time": "2024-04-06T17:39:36",
            "upload_time_iso_8601": "2024-04-06T17:39:36.051246Z",
            "url": "https://files.pythonhosted.org/packages/88/94/4a94ebe171c3b8fe9f58656355dbc295bd18617a3ed7e88f250e817c6a37/pcts-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dc54099b0e0e66d1a3b8d1597c8ff81103bc92fb32676119f1da5dec2e1af34c",
                "md5": "c3ff5d5fd0c41666727d22545adc6b9a",
                "sha256": "1ce3ff4c6a8991807df31a10281bcf8ac66a85caa6c32f075b5c7d9afe970f43"
            },
            "downloads": -1,
            "filename": "pcts-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "c3ff5d5fd0c41666727d22545adc6b9a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 10991,
            "upload_time": "2024-04-06T17:39:37",
            "upload_time_iso_8601": "2024-04-06T17:39:37.531334Z",
            "url": "https://files.pythonhosted.org/packages/dc/54/099b0e0e66d1a3b8d1597c8ff81103bc92fb32676119f1da5dec2e1af34c/pcts-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-06 17:39:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "dsm-72",
    "github_project": "pcts",
    "github_not_found": true,
    "lcname": "pcts"
}
        
Elapsed time: 4.51148s