# personality_questionnaire
[![License](https://img.shields.io/badge/license-MIT-yellow.svg)](LICENSE)
[![python](https://img.shields.io/badge/Python-3.11-3776AB.svg?style=flat&logo=python&logoColor=white)](https://www.python.org)
[![Checked with mypy](https://www.mypy-lang.org/static/mypy_badge.svg)](https://www.mypy-lang.org/)
Personality and general questionnaire processing methods for various experiments.
# Supported Questionnaires
* BFI-2
* VAS-F
## Inputs
Questionnaire answers are...
* read via command line interface
* ints in a numpy ndarray (.npy)
* ints in a csv file (.csv)
* strings in a csv file (.csv)
## Outputs
For BFI-2, the OCEAN and FACET values are scaled to the range [0..1] per participant.
For VAS-F, the relative values are calculated.
# Setup
### Install package from PyPI
```
pip install personality_questionnaire
```
### Install package for development
```
git clone https://github.com/fodorad/personality_questionnaire
cd personality_questionnaire
pip install .
pip install -U -r requirements.txt
python -m unittest discover -s test
```
# Quick start
### Run interactive BFI-2 questionnaire
If you installed it via pip:
```
personality_questionnaire --participant_id test --questionnaire bfi2
```
alternative call:
```
python personality_questionnaire/api.py --participant_id test --questionnaire bfi2
```
### Run interactive VAS-F (pre- and post-)questionnaires
If you installed it via pip:
```
personality_questionnaire --participant_id test --questionnaire vasf --vasf_tag pre
personality_questionnaire --participant_id test --questionnaire vasf --vasf_tag post
```
alternative call:
```
python personality_questionnaire/api.py --participant_id test --questionnaire vasf --vasf_tag pre
python personality_questionnaire/api.py --participant_id test --questionnaire vasf --vasf_tag post
```
# Projects using exordium
### (2022) PersonalityLinMulT
LinMulT is trained for Big Five personality trait estimation using the First Impressions V2 dataset and sentiment estimation using the MOSI and MOSEI datasets.
* paper: Multimodal Sentiment and Personality Perception Under Speech: A Comparison of Transformer-based Architectures ([pdf](https://proceedings.mlr.press/v173/fodor22a/fodor22a.pdf), [website](https://proceedings.mlr.press/v173/fodor22a.html))
* code: https://github.com/fodorad/PersonalityLinMulT
# What's next
* Add support for the following questionnaires: HEXACO
# Updates
* 1.1.0: Add support for VAS-F and interactive CMD interface.
* 1.0.0: Add support for BFI-2 and PyPI publish.
# Contact
* Ádám Fodor (foauaai@inf.elte.hu)
Raw data
{
"_id": null,
"home_page": null,
"name": "personality_questionnaire",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": null,
"keywords": "bfi-2, personality, questionnaire, vas-f",
"author": null,
"author_email": "fodorad <foauaai@inf.elte.hu>",
"download_url": "https://files.pythonhosted.org/packages/a4/61/447fa71911bc5c06225c230c7132266cd0671be6399e11401c93972590ac/personality_questionnaire-1.1.2.tar.gz",
"platform": null,
"description": "# personality_questionnaire\n[![License](https://img.shields.io/badge/license-MIT-yellow.svg)](LICENSE)\n[![python](https://img.shields.io/badge/Python-3.11-3776AB.svg?style=flat&logo=python&logoColor=white)](https://www.python.org)\n[![Checked with mypy](https://www.mypy-lang.org/static/mypy_badge.svg)](https://www.mypy-lang.org/)\n\nPersonality and general questionnaire processing methods for various experiments.\n\n# Supported Questionnaires\n* BFI-2\n* VAS-F\n\n## Inputs\nQuestionnaire answers are...\n* read via command line interface\n* ints in a numpy ndarray (.npy)\n* ints in a csv file (.csv)\n* strings in a csv file (.csv)\n\n## Outputs\nFor BFI-2, the OCEAN and FACET values are scaled to the range [0..1] per participant.\n\nFor VAS-F, the relative values are calculated.\n\n# Setup\n### Install package from PyPI\n```\npip install personality_questionnaire\n```\n\n### Install package for development\n```\ngit clone https://github.com/fodorad/personality_questionnaire\ncd personality_questionnaire\npip install .\npip install -U -r requirements.txt\npython -m unittest discover -s test\n```\n\n# Quick start\n### Run interactive BFI-2 questionnaire\nIf you installed it via pip:\n```\npersonality_questionnaire --participant_id test --questionnaire bfi2\n```\nalternative call:\n```\npython personality_questionnaire/api.py --participant_id test --questionnaire bfi2\n```\n\n### Run interactive VAS-F (pre- and post-)questionnaires\nIf you installed it via pip:\n```\npersonality_questionnaire --participant_id test --questionnaire vasf --vasf_tag pre\npersonality_questionnaire --participant_id test --questionnaire vasf --vasf_tag post\n```\nalternative call:\n```\npython personality_questionnaire/api.py --participant_id test --questionnaire vasf --vasf_tag pre\npython personality_questionnaire/api.py --participant_id test --questionnaire vasf --vasf_tag post\n```\n\n# Projects using exordium\n\n### (2022) PersonalityLinMulT\nLinMulT is trained for Big Five personality trait estimation using the First Impressions V2 dataset and sentiment estimation using the MOSI and MOSEI datasets.\n* paper: Multimodal Sentiment and Personality Perception Under Speech: A Comparison of Transformer-based Architectures ([pdf](https://proceedings.mlr.press/v173/fodor22a/fodor22a.pdf), [website](https://proceedings.mlr.press/v173/fodor22a.html))\n* code: https://github.com/fodorad/PersonalityLinMulT\n\n# What's next\n* Add support for the following questionnaires: HEXACO\n\n# Updates\n* 1.1.0: Add support for VAS-F and interactive CMD interface.\n* 1.0.0: Add support for BFI-2 and PyPI publish.\n\n# Contact\n* \u00c1d\u00e1m Fodor (foauaai@inf.elte.hu)",
"bugtrack_url": null,
"license": null,
"summary": "Personality and general experiment questionnaire processing methods.",
"version": "1.1.2",
"project_urls": {
"Documentation": "https://github.com/fodorad/personality_questionnaire#readme",
"Issues": "https://github.com/fodorad/personality_questionnaire/issues",
"Source": "https://github.com/fodorad/personality_questionnaire"
},
"split_keywords": [
"bfi-2",
" personality",
" questionnaire",
" vas-f"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "3ffb5bdd1261d12e4718183c268e0b04baa5a95d2aa8ac7046e3197aa1fd2bfe",
"md5": "a521af91b743fb79641f132a88b20aab",
"sha256": "8b4d144aa97c2931b2cbbf509a4925a192f6745ccc81b1027d6943dbbd688b56"
},
"downloads": -1,
"filename": "personality_questionnaire-1.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a521af91b743fb79641f132a88b20aab",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 10973,
"upload_time": "2024-04-02T19:27:36",
"upload_time_iso_8601": "2024-04-02T19:27:36.869785Z",
"url": "https://files.pythonhosted.org/packages/3f/fb/5bdd1261d12e4718183c268e0b04baa5a95d2aa8ac7046e3197aa1fd2bfe/personality_questionnaire-1.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a461447fa71911bc5c06225c230c7132266cd0671be6399e11401c93972590ac",
"md5": "88dde6aaa9a3ca26150c3f17d45693c2",
"sha256": "d4ce31c322baee267194668220f0b1f585d3347546a7f9dcc943689368e1ba03"
},
"downloads": -1,
"filename": "personality_questionnaire-1.1.2.tar.gz",
"has_sig": false,
"md5_digest": "88dde6aaa9a3ca26150c3f17d45693c2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 11738,
"upload_time": "2024-04-02T19:27:35",
"upload_time_iso_8601": "2024-04-02T19:27:35.724817Z",
"url": "https://files.pythonhosted.org/packages/a4/61/447fa71911bc5c06225c230c7132266cd0671be6399e11401c93972590ac/personality_questionnaire-1.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-02 19:27:35",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "fodorad",
"github_project": "personality_questionnaire#readme",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "numpy",
"specs": []
}
],
"lcname": "personality_questionnaire"
}