piedomains


Namepiedomains JSON
Version 0.0.18 PyPI version JSON
download
home_pagehttps://github.com/themains/piedomains
SummaryPredict categories based domain names and it's content
upload_time2023-04-20 22:42:42
maintainer
docs_urlNone
authorRajashekar Chintalapati and Gaurav Sood
requires_python
licenseMIT License
keywords predict category based on domain name and it's content
VCS
bugtrack_url
requirements tensorflow nltk bs4 scikit-learn Pillow selenium wheel pandas numpy
Travis-CI
coveralls test coverage No coveralls.
            ===========================================================================================
piedomains: predict the kind of content hosted by a domain based on domain name and content
===========================================================================================


.. image:: https://img.shields.io/pypi/v/piedomains.svg
    :target: https://pypi.python.org/pypi/piedomains
.. image:: https://readthedocs.org/projects/piedomains/badge/?version=latest
    :target: http://piedomains.readthedocs.io/en/latest/?badge=latest
    :alt: Documentation Status
.. image:: https://pepy.tech/badge/piedomains
    :target: https://pepy.tech/project/piedomains


The package infers the kind of content hosted by domain using the domain name, and the content, and screenshot from the homepage. 

We use domain category labels from `Shallalist  <https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ZXTQ7V>`__ and build our own training dataset by scraping and taking screenshots of the homepage. The final dataset used to train the model is posted on the `Harvard Dataverse <https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ZXTQ7V>`__.  Python notebooks used to build the models can be found `here <https://github.com/themains/piedomains/tree/55cd5ea68ccec58ab2152c5f1d6fb9e6cf5df363/piedomains/notebooks>`__ and the model files can be found `here <https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YHWCDC>`__

Installation
--------------
We strongly recommend installing `piedomains` inside a Python virtual environment
(see `venv documentation <https://docs.python.org/3/library/venv.html#creating-virtual-environments>`__)

::

    pip install piedomains

General API
-----------
1. **domain.pred_shalla_cat_with_text(input)**

 - What it does:

  - Predicts the kind of content hosted by a domain based on domain name and HTML of the homepage. 
  - The function can use locally stored HTML files or fetch fresh HTML files. 
  - If you specify a local folder, the function will look for HTML files corresponding to the domain. 
  - The HTML files must be stored as `domainname.html`. 
  - The function returns a pandas dataframe with label and corresponding probabilities.

 - Inputs:

  - `input`: list of domains. Either `input` or `html_path` must be specified.
  - `html_path`: path to the folder where the HTMLs are stored.  Either `input` or `html_path` must be specified. 
  - `latest`: use the latest model. Default is `True.`
  - Note: The function will by default look for a `html` folder on the same level as model files.

 - Output:

  - Returns a pandas dataframe with label and probabilities

 - Sample usage:
   ::
     
     from piedomains import domain
     domains = [
         "forbes.com",
         "xvideos.com",
         "last.fm",
         "facebook.com",
         "bellesa.co",
         "marketwatch.com"
     ]
     # with only domains
     result = domain.pred_shalla_cat_with_text(domains)
     # with html path where htmls are stored (offline mode)
     result = domain.pred_shalla_cat_with_text(html_path="path/to/htmls")
     # with domains and html path, html_path will be used to store htmls
     result = domain.pred_shalla_cat_with_text(domains, html_path="path/to/htmls")
     print(result)
 - Sample output:
   ::

                 domain  text_label  text_prob  \
     0      xvideos.com        porn   0.918919   
     1  marketwatch.com     finance   0.627119   
     2       forbes.com        news   0.575000   
     3       bellesa.co        porn   0.962932   
     4     facebook.com  recreation   0.200815   
     5          last.fm       music   0.229545   

                                       text_domain_probs  used_domain_text  \
     0  {'adv': 0.001249639527059502, 'aggressive': 9....              True   
     1  {'adv': 0.001249639527059502, 'aggressive': 9....              True   
     2  {'adv': 0.010590500641848523, 'aggressive': 0....              True   
     3  {'adv': 0.00021545223423966907, 'aggressive': ...              True   
     4  {'adv': 0.006381039197812215, 'aggressive': 0....              True   
     5  {'adv': 0.002181818181818182, 'aggressive': 0....              True   

                                           extracted_text  
     0  xvideos furry ass history mature rough redhead...  
     1  marketwatch gold stocks video chrome economy v...  
     2  forbes featured leadership watch money breakin...  
     3  bellesa audio vixen sensual passionate orgy ki...  
     4    facebook watch messenger portal bulletin oculus  
     5  last twitter music reset company back merchand...  

2. **domain.pred_shalla_cat_with_images(input)**

 - What it does:

  - Predicts the kind of content hosted by a domain based on screenshot of the homepage.  
  - The function can use locally stored screenshots files or fetch fresh screenshots of the homepage.  
  - If you specify a local folder, the function will look for jpegs corresponding to the domain. 
  - The screenshots must be stored as `domainname.jpg`. 
  - The function returns a pandas dataframe with label and corresponding probabilities.

 - Inputs:

  - `input`: list of domains. Either `input` or `image_path` must be specified.
  - `image_path`: path to the folder where the screenshots are stored.  Either `input` or `image_path` must be specified. 
  - `latest`: use the latest model. Default is `True.`
  - Note: The function will by default look for a `images`` folder on the same level as model files.

 - Output:

  - Returns panda dataframe with label and probabilities

 - Sample usage:
   ::
     
     from piedomains import domain
     domains = [
         "forbes.com",
         "xvideos.com",
         "last.fm",
         "facebook.com",
         "bellesa.co",
         "marketwatch.com"
     ]
     # with only domains
     result = domain.pred_shalla_cat_with_images(domains)
     # with image path where images are stored (offline mode)
     result = domain.pred_shalla_cat_with_images(image_path="path/to/images")
     # with domains and image path, image_path will be used to store images
     result = domain.pred_shalla_cat_with_images(domains, image_path="path/to/images")
     print(result)
 - Sample output:
   ::

                 domain image_label  image_prob  \
     0       bellesa.co    shopping    0.366663   
     1     facebook.com        porn    0.284601   
     2  marketwatch.com  recreation    0.367953   
     3      xvideos.com        porn    0.916550   
     4       forbes.com  recreation    0.415165   
     5          last.fm    shopping    0.303097   

                                       image_domain_probs  used_domain_screenshot  
     0  {'adv': 0.0009261096129193902, 'aggressive': 3...                    True  
     1  {'adv': 0.030470917001366615, 'aggressive': 0....                    True  
     2  {'adv': 0.006861348636448383, 'aggressive': 0....                    True  
     3  {'adv': 0.0004964823601767421, 'aggressive': 0...                    True  
     4  {'adv': 0.0016061498317867517, 'aggressive': 8...                    True  
     5  {'adv': 0.007956285960972309, 'aggressive': 0....                    True  

3. **domain.pred_shalla_cat(input)**

 - What it does:

  - Predicts the kind of content hosted by a domain based on screenshot of the homepage.  
  - The function can use locally stored screenshots and HTMLs or fetch fresh data.  
  - If you specify local folders, the function will look for jpegs corresponding to the domain. 
  - The screenshots must be stored as `domainname.jpg`. 
  - The HTML files must be stored as `domainname.html`. 
  - The function returns a pandas dataframe with label and corresponding probabilities.

 - Inputs:

  - `input`: list of domains. Either `input` or `html_path` must be specified.
  - `html_path`: path to the folder where the screenshots are stored.  Either `input`, `image_path`, or `html_path` must be specified. 
  - `image_path`: path to the folder where the screenshots are stored.  Either `input`, `image_path`, or `html_path` must be specified. 
  - `latest`: use the latest model. Default is `True.`
  - Note: The function will by default look for a `html` folder on the same level as model files.
  - Note: The function will by default look for a `images` folder on the same level as model files.

 - Output

  - Returns panda dataframe with label and probabilities

 - Sample usage:
   ::
     
     from piedomains import domain
     domains = [
         "forbes.com",
         "xvideos.com",
         "last.fm",
         "facebook.com",
         "bellesa.co",
         "marketwatch.com"
     ]
     # with only domains
     result = domain.pred_shalla_cat(domains)
     # with html path where htmls are stored (offline mode)
     result = domain.pred_shalla_cat(html_path="path/to/htmls")
     # with image path where images are stored (offline mode)
     result = domain.pred_shalla_cat(image_path="path/to/images")
     print(result)

 - Sample output:
   ::

                   domain  text_label  text_prob  \
     0      xvideos.com        porn   0.918919   
     1  marketwatch.com     finance   0.627119   
     2       forbes.com        news   0.575000   
     3       bellesa.co        porn   0.962932   
     4     facebook.com  recreation   0.200815   
     5          last.fm       music   0.229545   

                                       text_domain_probs  used_domain_text  \
     0  {'adv': 0.001249639527059502, 'aggressive': 9....              True   
     1  {'adv': 0.001249639527059502, 'aggressive': 9....              True   
     2  {'adv': 0.010590500641848523, 'aggressive': 0....              True   
     3  {'adv': 0.00021545223423966907, 'aggressive': ...              True   
     4  {'adv': 0.006381039197812215, 'aggressive': 0....              True   
     5  {'adv': 0.002181818181818182, 'aggressive': 0....              True   

                                           extracted_text image_label  image_prob  \
     0  xvideos furry ass history mature rough redhead...        porn    0.916550   
     1  marketwatch gold stocks video chrome economy v...  recreation    0.370665   
     2  forbes featured leadership watch money breakin...  recreation    0.422517   
     3  bellesa audio vixen sensual passionate orgy ki...        porn    0.409875   
     4    facebook watch messenger portal bulletin oculus        porn    0.284601   
     5  last twitter music reset company back merchand...    shopping    0.420788   

                                       image_domain_probs  used_domain_screenshot  \
     0  {'adv': 0.0004964823601767421, 'aggressive': 0...                    True   
     1  {'adv': 0.007065971381962299, 'aggressive': 0....                    True   
     2  {'adv': 0.0016623957781121135, 'aggressive': 7...                    True   
     3  {'adv': 0.0008810096187517047, 'aggressive': 0...                    True   
     4  {'adv': 0.030470917001366615, 'aggressive': 0....                    True   
     5  {'adv': 0.01235155574977398, 'aggressive': 0.0...                    True   

           label  label_prob                              combined_domain_probs  
     0      porn    0.917735  {'adv': 0.0008730609436181221, 'aggressive': 0...  
     1   finance    0.315346  {'adv': 0.004157805454510901, 'aggressive': 0....  
     2      news    0.367533  {'adv': 0.006126448209980318, 'aggressive': 0....  
     3      porn    0.686404  {'adv': 0.0005482309264956868, 'aggressive': 0...  
     4      porn    0.223327  {'adv': 0.018425978099589416, 'aggressive': 0....  
     5  shopping    0.232422  {'adv': 0.007266686965796081, 'aggressive': 0....  


Authors
-------
Rajashekar Chintalapati and Gaurav Sood

Contributor Code of Conduct
---------------------------------
The project welcomes contributions from everyone! In fact, it depends on
it. To maintain this welcoming atmosphere, and to collaborate in a fun
and productive way, we expect contributors to the project to abide by
the `Contributor Code of Conduct <http://contributor-covenant.org/version/1/0/0/>`__.

License
----------
The package is released under the `MIT License <https://opensource.org/licenses/MIT>`__.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/themains/piedomains",
    "name": "piedomains",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "predict category based on domain name and it's content",
    "author": "Rajashekar Chintalapati and Gaurav Sood",
    "author_email": "rajshekar.ch@gmail.com, gsood07@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/77/87/5fd6b79f7da87aeaca3c409eae3ae6a74eac25b429187be23bf329ed1447/piedomains-0.0.18.tar.gz",
    "platform": null,
    "description": "===========================================================================================\npiedomains: predict the kind of content hosted by a domain based on domain name and content\n===========================================================================================\n\n\n.. image:: https://img.shields.io/pypi/v/piedomains.svg\n    :target: https://pypi.python.org/pypi/piedomains\n.. image:: https://readthedocs.org/projects/piedomains/badge/?version=latest\n    :target: http://piedomains.readthedocs.io/en/latest/?badge=latest\n    :alt: Documentation Status\n.. image:: https://pepy.tech/badge/piedomains\n    :target: https://pepy.tech/project/piedomains\n\n\nThe package infers the kind of content hosted by domain using the domain name, and the content, and screenshot from the homepage. \n\nWe use domain category labels from `Shallalist  <https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ZXTQ7V>`__ and build our own training dataset by scraping and taking screenshots of the homepage. The final dataset used to train the model is posted on the `Harvard Dataverse <https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ZXTQ7V>`__.  Python notebooks used to build the models can be found `here <https://github.com/themains/piedomains/tree/55cd5ea68ccec58ab2152c5f1d6fb9e6cf5df363/piedomains/notebooks>`__ and the model files can be found `here <https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YHWCDC>`__\n\nInstallation\n--------------\nWe strongly recommend installing `piedomains` inside a Python virtual environment\n(see `venv documentation <https://docs.python.org/3/library/venv.html#creating-virtual-environments>`__)\n\n::\n\n    pip install piedomains\n\nGeneral API\n-----------\n1. **domain.pred_shalla_cat_with_text(input)**\n\n - What it does:\n\n  - Predicts the kind of content hosted by a domain based on domain name and HTML of the homepage. \n  - The function can use locally stored HTML files or fetch fresh HTML files. \n  - If you specify a local folder, the function will look for HTML files corresponding to the domain. \n  - The HTML files must be stored as `domainname.html`. \n  - The function returns a pandas dataframe with label and corresponding probabilities.\n\n - Inputs:\n\n  - `input`: list of domains. Either `input` or `html_path` must be specified.\n  - `html_path`: path to the folder where the HTMLs are stored.  Either `input` or `html_path` must be specified. \n  - `latest`: use the latest model. Default is `True.`\n  - Note: The function will by default look for a `html` folder on the same level as model files.\n\n - Output:\n\n  - Returns a pandas dataframe with label and probabilities\n\n - Sample usage:\n   ::\n     \n     from piedomains import domain\n     domains = [\n         \"forbes.com\",\n         \"xvideos.com\",\n         \"last.fm\",\n         \"facebook.com\",\n         \"bellesa.co\",\n         \"marketwatch.com\"\n     ]\n     # with only domains\n     result = domain.pred_shalla_cat_with_text(domains)\n     # with html path where htmls are stored (offline mode)\n     result = domain.pred_shalla_cat_with_text(html_path=\"path/to/htmls\")\n     # with domains and html path, html_path will be used to store htmls\n     result = domain.pred_shalla_cat_with_text(domains, html_path=\"path/to/htmls\")\n     print(result)\n - Sample output:\n   ::\n\n                 domain  text_label  text_prob  \\\n     0      xvideos.com        porn   0.918919   \n     1  marketwatch.com     finance   0.627119   \n     2       forbes.com        news   0.575000   \n     3       bellesa.co        porn   0.962932   \n     4     facebook.com  recreation   0.200815   \n     5          last.fm       music   0.229545   \n\n                                       text_domain_probs  used_domain_text  \\\n     0  {'adv': 0.001249639527059502, 'aggressive': 9....              True   \n     1  {'adv': 0.001249639527059502, 'aggressive': 9....              True   \n     2  {'adv': 0.010590500641848523, 'aggressive': 0....              True   \n     3  {'adv': 0.00021545223423966907, 'aggressive': ...              True   \n     4  {'adv': 0.006381039197812215, 'aggressive': 0....              True   \n     5  {'adv': 0.002181818181818182, 'aggressive': 0....              True   \n\n                                           extracted_text  \n     0  xvideos furry ass history mature rough redhead...  \n     1  marketwatch gold stocks video chrome economy v...  \n     2  forbes featured leadership watch money breakin...  \n     3  bellesa audio vixen sensual passionate orgy ki...  \n     4    facebook watch messenger portal bulletin oculus  \n     5  last twitter music reset company back merchand...  \n\n2. **domain.pred_shalla_cat_with_images(input)**\n\n - What it does:\n\n  - Predicts the kind of content hosted by a domain based on screenshot of the homepage.  \n  - The function can use locally stored screenshots files or fetch fresh screenshots of the homepage.  \n  - If you specify a local folder, the function will look for jpegs corresponding to the domain. \n  - The screenshots must be stored as `domainname.jpg`. \n  - The function returns a pandas dataframe with label and corresponding probabilities.\n\n - Inputs:\n\n  - `input`: list of domains. Either `input` or `image_path` must be specified.\n  - `image_path`: path to the folder where the screenshots are stored.  Either `input` or `image_path` must be specified. \n  - `latest`: use the latest model. Default is `True.`\n  - Note: The function will by default look for a `images`` folder on the same level as model files.\n\n - Output:\n\n  - Returns panda dataframe with label and probabilities\n\n - Sample usage:\n   ::\n     \n     from piedomains import domain\n     domains = [\n         \"forbes.com\",\n         \"xvideos.com\",\n         \"last.fm\",\n         \"facebook.com\",\n         \"bellesa.co\",\n         \"marketwatch.com\"\n     ]\n     # with only domains\n     result = domain.pred_shalla_cat_with_images(domains)\n     # with image path where images are stored (offline mode)\n     result = domain.pred_shalla_cat_with_images(image_path=\"path/to/images\")\n     # with domains and image path, image_path will be used to store images\n     result = domain.pred_shalla_cat_with_images(domains, image_path=\"path/to/images\")\n     print(result)\n - Sample output:\n   ::\n\n                 domain image_label  image_prob  \\\n     0       bellesa.co    shopping    0.366663   \n     1     facebook.com        porn    0.284601   \n     2  marketwatch.com  recreation    0.367953   \n     3      xvideos.com        porn    0.916550   \n     4       forbes.com  recreation    0.415165   \n     5          last.fm    shopping    0.303097   \n\n                                       image_domain_probs  used_domain_screenshot  \n     0  {'adv': 0.0009261096129193902, 'aggressive': 3...                    True  \n     1  {'adv': 0.030470917001366615, 'aggressive': 0....                    True  \n     2  {'adv': 0.006861348636448383, 'aggressive': 0....                    True  \n     3  {'adv': 0.0004964823601767421, 'aggressive': 0...                    True  \n     4  {'adv': 0.0016061498317867517, 'aggressive': 8...                    True  \n     5  {'adv': 0.007956285960972309, 'aggressive': 0....                    True  \n\n3. **domain.pred_shalla_cat(input)**\n\n - What it does:\n\n  - Predicts the kind of content hosted by a domain based on screenshot of the homepage.  \n  - The function can use locally stored screenshots and HTMLs or fetch fresh data.  \n  - If you specify local folders, the function will look for jpegs corresponding to the domain. \n  - The screenshots must be stored as `domainname.jpg`. \n  - The HTML files must be stored as `domainname.html`. \n  - The function returns a pandas dataframe with label and corresponding probabilities.\n\n - Inputs:\n\n  - `input`: list of domains. Either `input` or `html_path` must be specified.\n  - `html_path`: path to the folder where the screenshots are stored.  Either `input`, `image_path`, or `html_path` must be specified. \n  - `image_path`: path to the folder where the screenshots are stored.  Either `input`, `image_path`, or `html_path` must be specified. \n  - `latest`: use the latest model. Default is `True.`\n  - Note: The function will by default look for a `html` folder on the same level as model files.\n  - Note: The function will by default look for a `images` folder on the same level as model files.\n\n - Output\n\n  - Returns panda dataframe with label and probabilities\n\n - Sample usage:\n   ::\n     \n     from piedomains import domain\n     domains = [\n         \"forbes.com\",\n         \"xvideos.com\",\n         \"last.fm\",\n         \"facebook.com\",\n         \"bellesa.co\",\n         \"marketwatch.com\"\n     ]\n     # with only domains\n     result = domain.pred_shalla_cat(domains)\n     # with html path where htmls are stored (offline mode)\n     result = domain.pred_shalla_cat(html_path=\"path/to/htmls\")\n     # with image path where images are stored (offline mode)\n     result = domain.pred_shalla_cat(image_path=\"path/to/images\")\n     print(result)\n\n - Sample output:\n   ::\n\n                   domain  text_label  text_prob  \\\n     0      xvideos.com        porn   0.918919   \n     1  marketwatch.com     finance   0.627119   \n     2       forbes.com        news   0.575000   \n     3       bellesa.co        porn   0.962932   \n     4     facebook.com  recreation   0.200815   \n     5          last.fm       music   0.229545   \n\n                                       text_domain_probs  used_domain_text  \\\n     0  {'adv': 0.001249639527059502, 'aggressive': 9....              True   \n     1  {'adv': 0.001249639527059502, 'aggressive': 9....              True   \n     2  {'adv': 0.010590500641848523, 'aggressive': 0....              True   \n     3  {'adv': 0.00021545223423966907, 'aggressive': ...              True   \n     4  {'adv': 0.006381039197812215, 'aggressive': 0....              True   \n     5  {'adv': 0.002181818181818182, 'aggressive': 0....              True   \n\n                                           extracted_text image_label  image_prob  \\\n     0  xvideos furry ass history mature rough redhead...        porn    0.916550   \n     1  marketwatch gold stocks video chrome economy v...  recreation    0.370665   \n     2  forbes featured leadership watch money breakin...  recreation    0.422517   \n     3  bellesa audio vixen sensual passionate orgy ki...        porn    0.409875   \n     4    facebook watch messenger portal bulletin oculus        porn    0.284601   \n     5  last twitter music reset company back merchand...    shopping    0.420788   \n\n                                       image_domain_probs  used_domain_screenshot  \\\n     0  {'adv': 0.0004964823601767421, 'aggressive': 0...                    True   \n     1  {'adv': 0.007065971381962299, 'aggressive': 0....                    True   \n     2  {'adv': 0.0016623957781121135, 'aggressive': 7...                    True   \n     3  {'adv': 0.0008810096187517047, 'aggressive': 0...                    True   \n     4  {'adv': 0.030470917001366615, 'aggressive': 0....                    True   \n     5  {'adv': 0.01235155574977398, 'aggressive': 0.0...                    True   \n\n           label  label_prob                              combined_domain_probs  \n     0      porn    0.917735  {'adv': 0.0008730609436181221, 'aggressive': 0...  \n     1   finance    0.315346  {'adv': 0.004157805454510901, 'aggressive': 0....  \n     2      news    0.367533  {'adv': 0.006126448209980318, 'aggressive': 0....  \n     3      porn    0.686404  {'adv': 0.0005482309264956868, 'aggressive': 0...  \n     4      porn    0.223327  {'adv': 0.018425978099589416, 'aggressive': 0....  \n     5  shopping    0.232422  {'adv': 0.007266686965796081, 'aggressive': 0....  \n\n\nAuthors\n-------\nRajashekar Chintalapati and Gaurav Sood\n\nContributor Code of Conduct\n---------------------------------\nThe project welcomes contributions from everyone! In fact, it depends on\nit. To maintain this welcoming atmosphere, and to collaborate in a fun\nand productive way, we expect contributors to the project to abide by\nthe `Contributor Code of Conduct <http://contributor-covenant.org/version/1/0/0/>`__.\n\nLicense\n----------\nThe package is released under the `MIT License <https://opensource.org/licenses/MIT>`__.\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Predict categories based domain names and it's content",
    "version": "0.0.18",
    "split_keywords": [
        "predict",
        "category",
        "based",
        "on",
        "domain",
        "name",
        "and",
        "it's",
        "content"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "609d92809a08aef93cb5d8506ee283bc664650213dd5d6462549f9e9ff103144",
                "md5": "c757376a03d79026609ad8b8da0174d3",
                "sha256": "d9d450cfeaf6b32e076a80ea9be526f20bc5a3fdbbd2d8981704c4dd0d5bbb05"
            },
            "downloads": -1,
            "filename": "piedomains-0.0.18-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c757376a03d79026609ad8b8da0174d3",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 2971415,
            "upload_time": "2023-04-20T22:42:40",
            "upload_time_iso_8601": "2023-04-20T22:42:40.565492Z",
            "url": "https://files.pythonhosted.org/packages/60/9d/92809a08aef93cb5d8506ee283bc664650213dd5d6462549f9e9ff103144/piedomains-0.0.18-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "77875fd6b79f7da87aeaca3c409eae3ae6a74eac25b429187be23bf329ed1447",
                "md5": "2142c3c4c120d4d86ca6f0ad5d28856d",
                "sha256": "1c65bbe1901b24a1746605f6cc0fe93cf3f3a8307031b85aeee7334dd8e2e095"
            },
            "downloads": -1,
            "filename": "piedomains-0.0.18.tar.gz",
            "has_sig": false,
            "md5_digest": "2142c3c4c120d4d86ca6f0ad5d28856d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2930945,
            "upload_time": "2023-04-20T22:42:42",
            "upload_time_iso_8601": "2023-04-20T22:42:42.477828Z",
            "url": "https://files.pythonhosted.org/packages/77/87/5fd6b79f7da87aeaca3c409eae3ae6a74eac25b429187be23bf329ed1447/piedomains-0.0.18.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-20 22:42:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "themains",
    "github_project": "piedomains",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "appveyor": true,
    "requirements": [
        {
            "name": "tensorflow",
            "specs": [
                [
                    ">=",
                    "2.11.1"
                ]
            ]
        },
        {
            "name": "nltk",
            "specs": [
                [
                    "==",
                    "3.7"
                ]
            ]
        },
        {
            "name": "bs4",
            "specs": [
                [
                    "==",
                    "0.0.1"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    "==",
                    "1.2.1"
                ]
            ]
        },
        {
            "name": "Pillow",
            "specs": [
                [
                    "==",
                    "9.4.0"
                ]
            ]
        },
        {
            "name": "selenium",
            "specs": [
                [
                    "==",
                    "4.8.0"
                ]
            ]
        },
        {
            "name": "wheel",
            "specs": [
                [
                    "==",
                    "0.38.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "1.4.2"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.22.2"
                ]
            ]
        }
    ],
    "tox": true,
    "lcname": "piedomains"
}
        
Elapsed time: 0.07532s