# pmdarima
[![PyPI version](https://badge.fury.io/py/pmdarima.svg)](https://badge.fury.io/py/pmdarima)
[![CircleCI](https://circleci.com/gh/alkaline-ml/pmdarima.svg?style=svg)](https://circleci.com/gh/alkaline-ml/pmdarima)
[![Github Actions Status](https://github.com/alkaline-ml/pmdarima/workflows/Mac%20and%20Windows%20Builds/badge.svg?branch=master)](https://github.com/alkaline-ml/pmdarima/actions?query=workflow%3A%22Mac+and+Windows+Builds%22+branch%3Amaster)
[![codecov](https://codecov.io/gh/alkaline-ml/pmdarima/branch/master/graph/badge.svg)](https://codecov.io/gh/alkaline-ml/pmdarima)
![Supported versions](https://img.shields.io/badge/python-3.7+-blue.svg)
![Downloads](https://img.shields.io/badge/dynamic/json?color=blue&label=downloads&query=%24.total&url=https%3A%2F%2Fstore.zapier.com%2Fapi%2Frecords%3Fsecret%3D1e061b29db6c4f15af01103d403b0237)
![Downloads/Week](https://img.shields.io/badge/dynamic/json?color=blue&label=downloads%2Fweek&query=%24.weekly&url=https%3A%2F%2Fstore.zapier.com%2Fapi%2Frecords%3Fsecret%3D1e061b29db6c4f15af01103d403b0237)
Pmdarima (originally `pyramid-arima`, for the anagram of 'py' + 'arima') is a statistical
library designed to fill the void in Python's time series analysis capabilities. This includes:
* The equivalent of R's [`auto.arima`](https://www.rdocumentation.org/packages/forecast/versions/7.3/topics/auto.arima) functionality
* A collection of statistical tests of stationarity and seasonality
* Time series utilities, such as differencing and inverse differencing
* Numerous endogenous and exogenous transformers and featurizers, including Box-Cox and Fourier transformations
* Seasonal time series decompositions
* Cross-validation utilities
* A rich collection of built-in time series datasets for prototyping and examples
* Scikit-learn-esque pipelines to consolidate your estimators and promote productionization
Pmdarima wraps [statsmodels](https://github.com/statsmodels/statsmodels/blob/master/statsmodels)
under the hood, but is designed with an interface that's familiar to users coming
from a scikit-learn background.
## Installation
### pip
Pmdarima has binary and source distributions for Windows, Mac and Linux (`manylinux`) on pypi
under the package name `pmdarima` and can be downloaded via `pip`:
```bash
pip install pmdarima
```
### conda
Pmdarima also has Mac and Linux builds available via `conda` and can be installed like so:
```bash
conda config --add channels conda-forge
conda config --set channel_priority strict
conda install pmdarima
```
**Note:** We do not maintain our own Conda binaries, they are maintained at https://github.com/conda-forge/pmdarima-feedstock.
See that repo for further documentation on working with Pmdarima on Conda.
## Quickstart Examples
Fitting a simple auto-ARIMA on the [`wineind`](https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.datasets.load_wineind.html#pmdarima.datasets.load_wineind) dataset:
```python
import pmdarima as pm
from pmdarima.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
# Load/split your data
y = pm.datasets.load_wineind()
train, test = train_test_split(y, train_size=150)
# Fit your model
model = pm.auto_arima(train, seasonal=True, m=12)
# make your forecasts
forecasts = model.predict(test.shape[0]) # predict N steps into the future
# Visualize the forecasts (blue=train, green=forecasts)
x = np.arange(y.shape[0])
plt.plot(x[:150], train, c='blue')
plt.plot(x[150:], forecasts, c='green')
plt.show()
```
<img src="http://alkaline-ml.com/img/static/pmdarima_readme_example1.png" alt="Wineind example"/>
Fitting a more complex pipeline on the [`sunspots`](https://www.rdocumentation.org/packages/datasets/versions/3.6.1/topics/sunspots) dataset,
serializing it, and then loading it from disk to make predictions:
```python
import pmdarima as pm
from pmdarima.model_selection import train_test_split
from pmdarima.pipeline import Pipeline
from pmdarima.preprocessing import BoxCoxEndogTransformer
import pickle
# Load/split your data
y = pm.datasets.load_sunspots()
train, test = train_test_split(y, train_size=2700)
# Define and fit your pipeline
pipeline = Pipeline([
('boxcox', BoxCoxEndogTransformer(lmbda2=1e-6)), # lmbda2 avoids negative values
('arima', pm.AutoARIMA(seasonal=True, m=12,
suppress_warnings=True,
trace=True))
])
pipeline.fit(train)
# Serialize your model just like you would in scikit:
with open('model.pkl', 'wb') as pkl:
pickle.dump(pipeline, pkl)
# Load it and make predictions seamlessly:
with open('model.pkl', 'rb') as pkl:
mod = pickle.load(pkl)
print(mod.predict(15))
# [25.20580375 25.05573898 24.4263037 23.56766793 22.67463049 21.82231043
# 21.04061069 20.33693017 19.70906027 19.1509862 18.6555793 18.21577243
# 17.8250318 17.47750614 17.16803394]
```
### Availability
`pmdarima` is available on PyPi in pre-built Wheel files for Python 3.7+ for the following platforms:
* Mac (64-bit)
* Linux (64-bit manylinux)
* Windows (64-bit)
* 32-bit wheels are available for pmdarima versions below 2.0.0 and Python versions below 3.10
If a wheel doesn't exist for your platform, you can still `pip install` and it
will build from the source distribution tarball, however you'll need `cython>=0.29`
and `gcc` (Mac/Linux) or `MinGW` (Windows) in order to build the package from source.
Note that legacy versions (<1.0.0) are available under the name
"`pyramid-arima`" and can be pip installed via:
```bash
# Legacy warning:
$ pip install pyramid-arima
# python -c 'import pyramid;'
```
However, this is not recommended.
## Documentation
All of your questions and more (including examples and guides) can be answered by
the [`pmdarima` documentation](https://www.alkaline-ml.com/pmdarima). If not, always
feel free to file an issue.
Raw data
{
"_id": null,
"home_page": "http://alkaline-ml.com/pmdarima",
"name": "pmdarima",
"maintainer": "Taylor G. Smith",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "taylor.smith@alkaline-ml.com",
"keywords": "arima timeseries forecasting pyramid pmdarima pyramid-arima scikit-learn statsmodels",
"author": "",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/3c/2b/3540b4af4f0a1593ee09fa20460d0f402b52aa76cf683f995555b7f64abd/pmdarima-2.0.4.tar.gz",
"platform": null,
"description": "# pmdarima\n\n[![PyPI version](https://badge.fury.io/py/pmdarima.svg)](https://badge.fury.io/py/pmdarima)\n[![CircleCI](https://circleci.com/gh/alkaline-ml/pmdarima.svg?style=svg)](https://circleci.com/gh/alkaline-ml/pmdarima)\n[![Github Actions Status](https://github.com/alkaline-ml/pmdarima/workflows/Mac%20and%20Windows%20Builds/badge.svg?branch=master)](https://github.com/alkaline-ml/pmdarima/actions?query=workflow%3A%22Mac+and+Windows+Builds%22+branch%3Amaster)\n[![codecov](https://codecov.io/gh/alkaline-ml/pmdarima/branch/master/graph/badge.svg)](https://codecov.io/gh/alkaline-ml/pmdarima)\n![Supported versions](https://img.shields.io/badge/python-3.7+-blue.svg)\n![Downloads](https://img.shields.io/badge/dynamic/json?color=blue&label=downloads&query=%24.total&url=https%3A%2F%2Fstore.zapier.com%2Fapi%2Frecords%3Fsecret%3D1e061b29db6c4f15af01103d403b0237)\n![Downloads/Week](https://img.shields.io/badge/dynamic/json?color=blue&label=downloads%2Fweek&query=%24.weekly&url=https%3A%2F%2Fstore.zapier.com%2Fapi%2Frecords%3Fsecret%3D1e061b29db6c4f15af01103d403b0237)\n\nPmdarima (originally `pyramid-arima`, for the anagram of 'py' + 'arima') is a statistical\nlibrary designed to fill the void in Python's time series analysis capabilities. This includes:\n\n * The equivalent of R's [`auto.arima`](https://www.rdocumentation.org/packages/forecast/versions/7.3/topics/auto.arima) functionality\n * A collection of statistical tests of stationarity and seasonality\n * Time series utilities, such as differencing and inverse differencing\n * Numerous endogenous and exogenous transformers and featurizers, including Box-Cox and Fourier transformations\n * Seasonal time series decompositions\n * Cross-validation utilities\n * A rich collection of built-in time series datasets for prototyping and examples\n * Scikit-learn-esque pipelines to consolidate your estimators and promote productionization\n \nPmdarima wraps [statsmodels](https://github.com/statsmodels/statsmodels/blob/master/statsmodels)\nunder the hood, but is designed with an interface that's familiar to users coming\nfrom a scikit-learn background.\n\n## Installation\n\n### pip\n\nPmdarima has binary and source distributions for Windows, Mac and Linux (`manylinux`) on pypi\nunder the package name `pmdarima` and can be downloaded via `pip`:\n\n```bash\npip install pmdarima\n```\n\n### conda\n\nPmdarima also has Mac and Linux builds available via `conda` and can be installed like so:\n\n```bash\nconda config --add channels conda-forge\nconda config --set channel_priority strict\nconda install pmdarima\n```\n\n**Note:** We do not maintain our own Conda binaries, they are maintained at https://github.com/conda-forge/pmdarima-feedstock.\nSee that repo for further documentation on working with Pmdarima on Conda.\n\n## Quickstart Examples\n\nFitting a simple auto-ARIMA on the [`wineind`](https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.datasets.load_wineind.html#pmdarima.datasets.load_wineind) dataset:\n\n```python\nimport pmdarima as pm\nfrom pmdarima.model_selection import train_test_split\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n# Load/split your data\ny = pm.datasets.load_wineind()\ntrain, test = train_test_split(y, train_size=150)\n\n# Fit your model\nmodel = pm.auto_arima(train, seasonal=True, m=12)\n\n# make your forecasts\nforecasts = model.predict(test.shape[0]) # predict N steps into the future\n\n# Visualize the forecasts (blue=train, green=forecasts)\nx = np.arange(y.shape[0])\nplt.plot(x[:150], train, c='blue')\nplt.plot(x[150:], forecasts, c='green')\nplt.show()\n```\n\n<img src=\"http://alkaline-ml.com/img/static/pmdarima_readme_example1.png\" alt=\"Wineind example\"/>\n\n\nFitting a more complex pipeline on the [`sunspots`](https://www.rdocumentation.org/packages/datasets/versions/3.6.1/topics/sunspots) dataset,\nserializing it, and then loading it from disk to make predictions:\n\n```python\nimport pmdarima as pm\nfrom pmdarima.model_selection import train_test_split\nfrom pmdarima.pipeline import Pipeline\nfrom pmdarima.preprocessing import BoxCoxEndogTransformer\nimport pickle\n\n# Load/split your data\ny = pm.datasets.load_sunspots()\ntrain, test = train_test_split(y, train_size=2700)\n\n# Define and fit your pipeline\npipeline = Pipeline([\n ('boxcox', BoxCoxEndogTransformer(lmbda2=1e-6)), # lmbda2 avoids negative values\n ('arima', pm.AutoARIMA(seasonal=True, m=12,\n suppress_warnings=True,\n trace=True))\n])\n\npipeline.fit(train)\n\n# Serialize your model just like you would in scikit:\nwith open('model.pkl', 'wb') as pkl:\n pickle.dump(pipeline, pkl)\n \n# Load it and make predictions seamlessly:\nwith open('model.pkl', 'rb') as pkl:\n mod = pickle.load(pkl)\n print(mod.predict(15))\n# [25.20580375 25.05573898 24.4263037 23.56766793 22.67463049 21.82231043\n# 21.04061069 20.33693017 19.70906027 19.1509862 18.6555793 18.21577243\n# 17.8250318 17.47750614 17.16803394]\n```\n\n\n### Availability\n\n`pmdarima` is available on PyPi in pre-built Wheel files for Python 3.7+ for the following platforms:\n\n* Mac (64-bit)\n* Linux (64-bit manylinux)\n* Windows (64-bit)\n * 32-bit wheels are available for pmdarima versions below 2.0.0 and Python versions below 3.10\n\nIf a wheel doesn't exist for your platform, you can still `pip install` and it\nwill build from the source distribution tarball, however you'll need `cython>=0.29`\nand `gcc` (Mac/Linux) or `MinGW` (Windows) in order to build the package from source.\n\nNote that legacy versions (<1.0.0) are available under the name\n\"`pyramid-arima`\" and can be pip installed via:\n\n```bash\n# Legacy warning:\n$ pip install pyramid-arima\n# python -c 'import pyramid;'\n```\n\nHowever, this is not recommended.\n\n## Documentation\n\nAll of your questions and more (including examples and guides) can be answered by\nthe [`pmdarima` documentation](https://www.alkaline-ml.com/pmdarima). If not, always\nfeel free to file an issue.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Python's forecast::auto.arima equivalent",
"version": "2.0.4",
"project_urls": {
"Bug Tracker": "https://github.com/alkaline-ml/pmdarima/issues",
"Documentation": "http://alkaline-ml.com/pmdarima",
"Download": "https://pypi.org/project/pmdarima/#files",
"Homepage": "http://alkaline-ml.com/pmdarima",
"Source Code": "https://github.com/alkaline-ml/pmdarima"
},
"split_keywords": [
"arima",
"timeseries",
"forecasting",
"pyramid",
"pmdarima",
"pyramid-arima",
"scikit-learn",
"statsmodels"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "63905bdc90758dd9cf4c95b7c3f1b259654d521bad1a10177b0f02af2387d1c8",
"md5": "95aba2787d6cab8ec65c8962418ff195",
"sha256": "8e6c16672e0f122e63ab1d7282a362c762783264a07636bbc9d4ae3d58ac7605"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp310-cp310-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "95aba2787d6cab8ec65c8962418ff195",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 654625,
"upload_time": "2023-10-23T14:00:39",
"upload_time_iso_8601": "2023-10-23T14:00:39.699530Z",
"url": "https://files.pythonhosted.org/packages/63/90/5bdc90758dd9cf4c95b7c3f1b259654d521bad1a10177b0f02af2387d1c8/pmdarima-2.0.4-cp310-cp310-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e76e56d2dfe393d2934ed4067b5cf84cd60a6bb4993cb50c45c2660c251108ae",
"md5": "3650e5b7eb41fe0efe6d1b0f3ed43e54",
"sha256": "c9a839a477100331c47aa8a841c198ecb0b3fab4aff958622d31fec86d2aea76"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "3650e5b7eb41fe0efe6d1b0f3ed43e54",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 628645,
"upload_time": "2023-10-23T14:00:41",
"upload_time_iso_8601": "2023-10-23T14:00:41.679477Z",
"url": "https://files.pythonhosted.org/packages/e7/6e/56d2dfe393d2934ed4067b5cf84cd60a6bb4993cb50c45c2660c251108ae/pmdarima-2.0.4-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ec2be7d18360d56396b62781ba4616527af49244d4bed51f0780646fa3953cc8",
"md5": "89a145976d216a3d1fa47b9e613cd55a",
"sha256": "165bdf787f5dafd5faab543d20524413b765d9cb6f020f0e1846551e7678414a"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "89a145976d216a3d1fa47b9e613cd55a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 2120273,
"upload_time": "2023-10-23T13:43:01",
"upload_time_iso_8601": "2023-10-23T13:43:01.446576Z",
"url": "https://files.pythonhosted.org/packages/ec/2b/e7d18360d56396b62781ba4616527af49244d4bed51f0780646fa3953cc8/pmdarima-2.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cb700d357e09b452088952eb6a137d7f7e1fd600e24fccd33b5add39020e3a85",
"md5": "eb17d63d566b446acf98bc02fb1514e0",
"sha256": "cbde33812c37f441ba70d9e7b0479c758d56ad77a8dcbdead1fb8baad9aee806"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "eb17d63d566b446acf98bc02fb1514e0",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 613288,
"upload_time": "2023-10-23T13:57:09",
"upload_time_iso_8601": "2023-10-23T13:57:09.345066Z",
"url": "https://files.pythonhosted.org/packages/cb/70/0d357e09b452088952eb6a137d7f7e1fd600e24fccd33b5add39020e3a85/pmdarima-2.0.4-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f924d61c400452bed35dc8ccd183bcb2a008154f855b55b7a61cb0fa48872bbd",
"md5": "dcb24d91fca5f4fb9b0b06078325fe4c",
"sha256": "8d961c99b445e53eadf6627c61bf800f403bd247b7ec2f62c6dfe8a0b1bcbf0b"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp311-cp311-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "dcb24d91fca5f4fb9b0b06078325fe4c",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 652117,
"upload_time": "2023-10-23T13:59:23",
"upload_time_iso_8601": "2023-10-23T13:59:23.011662Z",
"url": "https://files.pythonhosted.org/packages/f9/24/d61c400452bed35dc8ccd183bcb2a008154f855b55b7a61cb0fa48872bbd/pmdarima-2.0.4-cp311-cp311-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "40e578afab229ccdaf6b947036440799dbdf88e2cd632e2f96b81f32de8aa05a",
"md5": "b2a095d0d99737a0fffe5c51ffea107a",
"sha256": "78e815c51074411bbe8433a912af4cc8dac394d9330cfedf57dd5ce08efe4a65"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "b2a095d0d99737a0fffe5c51ffea107a",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 628034,
"upload_time": "2023-10-23T13:59:24",
"upload_time_iso_8601": "2023-10-23T13:59:24.592017Z",
"url": "https://files.pythonhosted.org/packages/40/e5/78afab229ccdaf6b947036440799dbdf88e2cd632e2f96b81f32de8aa05a/pmdarima-2.0.4-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "351ce41fee54ec90e1e3c4ee7871710b8c370fa02a54cb09979aa140e0abec16",
"md5": "70edbb15ea5f52abb4decfca8c708054",
"sha256": "46677b68efffde66aa1291799b39b91420961967fa2b6e041e26bb263782d38d"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "70edbb15ea5f52abb4decfca8c708054",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 2245417,
"upload_time": "2023-10-23T13:43:03",
"upload_time_iso_8601": "2023-10-23T13:43:03.396127Z",
"url": "https://files.pythonhosted.org/packages/35/1c/e41fee54ec90e1e3c4ee7871710b8c370fa02a54cb09979aa140e0abec16/pmdarima-2.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "acf86c9364602b13f0dba129b53acd1344859690911a4d5021560d9fd6aa087f",
"md5": "a9d9901bb68a45c14b71cf9983edbbdc",
"sha256": "bc594dd981bca5217b4448c96e82dbd60553b07263517a5cb0510b4bfe66ded1"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "a9d9901bb68a45c14b71cf9983edbbdc",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 614688,
"upload_time": "2023-10-23T13:57:27",
"upload_time_iso_8601": "2023-10-23T13:57:27.789395Z",
"url": "https://files.pythonhosted.org/packages/ac/f8/6c9364602b13f0dba129b53acd1344859690911a4d5021560d9fd6aa087f/pmdarima-2.0.4-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a25d8dbe5ee4a225bf7eaa233893565dfe619342b37c97951a2ab141bdf4b185",
"md5": "28a4d4b6b030f12beecc67d2886ff825",
"sha256": "62a4ff308fbb5074a66c0877ba6b472d0fc406cbc0b5a2dba7e8fa800c9dd8ca"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp312-cp312-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "28a4d4b6b030f12beecc67d2886ff825",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 666148,
"upload_time": "2023-10-23T14:05:10",
"upload_time_iso_8601": "2023-10-23T14:05:10.227996Z",
"url": "https://files.pythonhosted.org/packages/a2/5d/8dbe5ee4a225bf7eaa233893565dfe619342b37c97951a2ab141bdf4b185/pmdarima-2.0.4-cp312-cp312-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7b9a40fe3ffb20491661b34a5f62cad1347ea9401100c5fe9a499dd61383828a",
"md5": "80b90ab085096ea43f3d2e29e4c70deb",
"sha256": "7e215ec6130b917843d26e0698637f976e4a6cc9dbd521bf44547668d08f058a"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "80b90ab085096ea43f3d2e29e4c70deb",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 1194638,
"upload_time": "2023-10-23T14:05:12",
"upload_time_iso_8601": "2023-10-23T14:05:12.030152Z",
"url": "https://files.pythonhosted.org/packages/7b/9a/40fe3ffb20491661b34a5f62cad1347ea9401100c5fe9a499dd61383828a/pmdarima-2.0.4-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "54ce25b655b60070ee31f7005b420ac5d89821623e6b59b94adb0045ef685c08",
"md5": "8f28c02a441de00e0b150c1bf1838285",
"sha256": "8790bff665a5ebaa36ddbbfd0e8ea51ad2e5809270dc74d462d5c2498b26220f"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "8f28c02a441de00e0b150c1bf1838285",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 2257948,
"upload_time": "2023-10-23T13:43:04",
"upload_time_iso_8601": "2023-10-23T13:43:04.648150Z",
"url": "https://files.pythonhosted.org/packages/54/ce/25b655b60070ee31f7005b420ac5d89821623e6b59b94adb0045ef685c08/pmdarima-2.0.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cf1c83b87c760144281f0dc4df43578587b59fe3c38f9d660b575adb9480a11a",
"md5": "3db8ce8840c2ba37ac326f6e12e2ee28",
"sha256": "a8bf7913bdbd0e286489b2111080a0f51f5d9d3ee5e05b7011a691207047ddcf"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "3db8ce8840c2ba37ac326f6e12e2ee28",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 625118,
"upload_time": "2023-10-23T14:02:34",
"upload_time_iso_8601": "2023-10-23T14:02:34.470740Z",
"url": "https://files.pythonhosted.org/packages/cf/1c/83b87c760144281f0dc4df43578587b59fe3c38f9d660b575adb9480a11a/pmdarima-2.0.4-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7c33fbaf61d7116b8b5196eeea4146c02074e33ee3cf36daf508db483e74ed1f",
"md5": "f564341a692b85db3c06c8fcaea7b22a",
"sha256": "5bce63dca165948a2311eff0c200e57370829855fce6e7d3fe930497f2f9fc04"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp37-cp37m-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "f564341a692b85db3c06c8fcaea7b22a",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.7",
"size": 652741,
"upload_time": "2023-10-23T13:55:07",
"upload_time_iso_8601": "2023-10-23T13:55:07.849658Z",
"url": "https://files.pythonhosted.org/packages/7c/33/fbaf61d7116b8b5196eeea4146c02074e33ee3cf36daf508db483e74ed1f/pmdarima-2.0.4-cp37-cp37m-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "31d5871fc78ddd59c44660c6438c9eb5a164c20b11a5ad72ecbab07756d29cd1",
"md5": "ab24b112c26927d148d38f29b13f4d90",
"sha256": "73060d28ffabeae7374ab48ba7882b29ae6998de3e3e34f5484c64e0baefda0d"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "ab24b112c26927d148d38f29b13f4d90",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.7",
"size": 2014799,
"upload_time": "2023-10-23T13:43:05",
"upload_time_iso_8601": "2023-10-23T13:43:05.999472Z",
"url": "https://files.pythonhosted.org/packages/31/d5/871fc78ddd59c44660c6438c9eb5a164c20b11a5ad72ecbab07756d29cd1/pmdarima-2.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fb1ae64357b2a283bb3969827a27137cfbd0e54b64baf59810379e625e3f2211",
"md5": "2e4a27f0c3bd077a234debb53815a078",
"sha256": "776e21e076393c6fe86895ffe71e6769c9b3fe0dffb92d6f6558657580cf0a42"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp37-cp37m-win_amd64.whl",
"has_sig": false,
"md5_digest": "2e4a27f0c3bd077a234debb53815a078",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.7",
"size": 613555,
"upload_time": "2023-10-23T13:56:52",
"upload_time_iso_8601": "2023-10-23T13:56:52.346773Z",
"url": "https://files.pythonhosted.org/packages/fb/1a/e64357b2a283bb3969827a27137cfbd0e54b64baf59810379e625e3f2211/pmdarima-2.0.4-cp37-cp37m-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "876950b56189889b5569c91ddacabad36ff3e64e9ca1c1ce553affc242a71abd",
"md5": "3ec0b924fcd7277b44a9c4e6bccef1d2",
"sha256": "ec865e8fb07378c470f3e41a77d6705875a674cefbe6c0185e9bc070e642da5c"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp38-cp38-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "3ec0b924fcd7277b44a9c4e6bccef1d2",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 653843,
"upload_time": "2023-10-23T14:02:31",
"upload_time_iso_8601": "2023-10-23T14:02:31.526376Z",
"url": "https://files.pythonhosted.org/packages/87/69/50b56189889b5569c91ddacabad36ff3e64e9ca1c1ce553affc242a71abd/pmdarima-2.0.4-cp38-cp38-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7cafb2d39ae748d358e5311198e2257ec70074f744db6e618ed7bb9def23156b",
"md5": "df11b4b152e50956751c68729fd7e7ca",
"sha256": "670ca1f93ed4f8239e7fbd7d1dd156108899e15e8fb0717b2b3fa605fa6ace35"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp38-cp38-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "df11b4b152e50956751c68729fd7e7ca",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 627869,
"upload_time": "2023-10-23T14:02:33",
"upload_time_iso_8601": "2023-10-23T14:02:33.477057Z",
"url": "https://files.pythonhosted.org/packages/7c/af/b2d39ae748d358e5311198e2257ec70074f744db6e618ed7bb9def23156b/pmdarima-2.0.4-cp38-cp38-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "71f1a45739f7a95faaabc01282f035330d4821d2f3c7757a0a25dce79d548947",
"md5": "62d7f812769859b8bfc772b4251d9f62",
"sha256": "d9ead43510adfe3c0d4000e37427bfcf11ba6cc3b26091368a847c5da010e052"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "62d7f812769859b8bfc772b4251d9f62",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 2166661,
"upload_time": "2023-10-23T13:43:07",
"upload_time_iso_8601": "2023-10-23T13:43:07.738711Z",
"url": "https://files.pythonhosted.org/packages/71/f1/a45739f7a95faaabc01282f035330d4821d2f3c7757a0a25dce79d548947/pmdarima-2.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a394af13b58081670aa16a82ff6b062032d50994cae87cc806c40f1c9c97a5e1",
"md5": "1cf8efb92ce6cc1d0d0b2130320e50d7",
"sha256": "c1213f3fa1e3ced9796f4092f9bd4be1881205f77bc2f5a1494695134a92000e"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp38-cp38-win_amd64.whl",
"has_sig": false,
"md5_digest": "1cf8efb92ce6cc1d0d0b2130320e50d7",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 615452,
"upload_time": "2023-10-23T13:58:34",
"upload_time_iso_8601": "2023-10-23T13:58:34.749694Z",
"url": "https://files.pythonhosted.org/packages/a3/94/af13b58081670aa16a82ff6b062032d50994cae87cc806c40f1c9c97a5e1/pmdarima-2.0.4-cp38-cp38-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e7c7dcbf0c80920d8674970fef4e89bde7dc439a318a6180fcaa6bd65d8420ef",
"md5": "cc9d4c5606f455fe65c16f9f13ded55b",
"sha256": "6e0e3c90e7a91b44599f08cd9c62880466860e76bd1b0ca2d2ff8e72834a1a7f"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp39-cp39-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "cc9d4c5606f455fe65c16f9f13ded55b",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 656233,
"upload_time": "2023-10-23T14:01:25",
"upload_time_iso_8601": "2023-10-23T14:01:25.202208Z",
"url": "https://files.pythonhosted.org/packages/e7/c7/dcbf0c80920d8674970fef4e89bde7dc439a318a6180fcaa6bd65d8420ef/pmdarima-2.0.4-cp39-cp39-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7f0f4b0b7f6f363d8a6d92230be78d5a14a97834e29d24c9a264d24bb95a092d",
"md5": "1650ccca7075b9db0ae4b1ce14085161",
"sha256": "8fe612384e4989f010dacdefbff874231f5b7351dfb84bcbfe9ed8d718fc4115"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "1650ccca7075b9db0ae4b1ce14085161",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 630448,
"upload_time": "2023-10-23T14:01:26",
"upload_time_iso_8601": "2023-10-23T14:01:26.799664Z",
"url": "https://files.pythonhosted.org/packages/7f/0f/4b0b7f6f363d8a6d92230be78d5a14a97834e29d24c9a264d24bb95a092d/pmdarima-2.0.4-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a214cd7417d90312ad6de4e5bb48d98f0b89e77bb427f5b80495074ab25cd13b",
"md5": "f4b5240d9ae2778075a48264bdb9824d",
"sha256": "a03936d681c720b0e44565d099de2619b762cb9d443f3043de9a78888aff6bb2"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "f4b5240d9ae2778075a48264bdb9824d",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 2120522,
"upload_time": "2023-10-23T13:43:09",
"upload_time_iso_8601": "2023-10-23T13:43:09.301085Z",
"url": "https://files.pythonhosted.org/packages/a2/14/cd7417d90312ad6de4e5bb48d98f0b89e77bb427f5b80495074ab25cd13b/pmdarima-2.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fea479d694daa45b86df0c87d17a16632c8f1f65e6bef84f1e4c6be5a24be38e",
"md5": "4ed61dd6cd3fc6fa461653cf3da02a52",
"sha256": "13ba7061d4e9d48f21e1c393bfaa3d6b31f60a8c97ddbe8d455fa675c594f9e4"
},
"downloads": -1,
"filename": "pmdarima-2.0.4-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "4ed61dd6cd3fc6fa461653cf3da02a52",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 614987,
"upload_time": "2023-10-23T14:01:04",
"upload_time_iso_8601": "2023-10-23T14:01:04.486616Z",
"url": "https://files.pythonhosted.org/packages/fe/a4/79d694daa45b86df0c87d17a16632c8f1f65e6bef84f1e4c6be5a24be38e/pmdarima-2.0.4-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3c2b3540b4af4f0a1593ee09fa20460d0f402b52aa76cf683f995555b7f64abd",
"md5": "11c0f6c15fe0bc85777510fe1ff72981",
"sha256": "b87f9d9f5b7dc2ddbd053687c2264e26ac98fd4118e843c7e9bc3dd7343e5c1a"
},
"downloads": -1,
"filename": "pmdarima-2.0.4.tar.gz",
"has_sig": false,
"md5_digest": "11c0f6c15fe0bc85777510fe1ff72981",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 630274,
"upload_time": "2023-10-23T13:55:11",
"upload_time_iso_8601": "2023-10-23T13:55:11.175561Z",
"url": "https://files.pythonhosted.org/packages/3c/2b/3540b4af4f0a1593ee09fa20460d0f402b52aa76cf683f995555b7f64abd/pmdarima-2.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-23 13:55:11",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "alkaline-ml",
"github_project": "pmdarima",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"circle": true,
"requirements": [],
"lcname": "pmdarima"
}