postbp


Namepostbp JSON
Version 1.2.1 PyPI version JSON
download
home_pageNone
SummaryA Python Library
upload_time2024-12-06 21:03:59
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT License
keywords postbp
VCS
bugtrack_url
requirements numpy pandas geopandas shapely windrose matplotlib tqdm
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PostBP: A Python Library for Post-Processing Outputs from Wildfire Growth Models

[![image](https://img.shields.io/pypi/v/postbp.svg)](https://pypi.python.org/pypi/postbp)
[![image](https://img.shields.io/conda/vn/conda-forge/postbp.svg)](https://anaconda.org/conda-forge/postbp)


**A Python Library**


-   Free software: MIT License
-   Documentation: https://nliu-cfs.github.io/postbp
    

## Introduction

PostBP is an open-source Python library designed to simplify the analysis and visualization of outputs from wildfire growth models (FGMs), such as the Canadian Burn-P3 model. The library extracts critical fire behavior metrics, including fire spread likelihoods, source-sink ratios, and burn probabilities, providing actionable insights for wildfire risk assessments and mitigation planning.

With PostBP, users can transform raw simulation outputs into intuitive metrics and maps, streamlining decision-making for wildfire management.

---

## Key Features

- **Hexagonal Patch Network**: Discretize landscapes into hexagonal patches for intuitive fire behavior analysis.
- **Fire Spread Analysis**:
  - Compute fire spread likelihoods between pairs of hexagonal patches.
  - Visualize fire spread patterns with rose diagrams.
- **Burn and Ignition Probabilities**:
  - Calculate patch-level burn probabilities and ignition likelihoods.
  - Supports user-defined thresholds for burned area classification.
- **Source-Sink Analysis**:
  - Quantify the tendency of patches to act as fire sources or sinks.
- **Customizable Inputs**:
  - Supports outputs from Burn-P3 and other FGMs with compatible formats.
- **Flexible Outputs**:
  - Save results as GeoDataFrames, GeoJSON, Apache GeoParquet, or ESRI Shapefiles.

---

## Installation

PostBP can be installed using pip, it is recommended to install PostBP in a dedicated Python environment to avoid dependency conflicts.:

```bash
pip install postbp

```

## Documentation and Support

Comprehensive documentation is available at:
https://nliu-cfs.github.io/postbp

For any issues or inquiries, please open an issue on the GitHub repository.

## Citation

If you use PostBP in your research, please cite:

Liu, N., Yemshanov, D., Parisien, M.-A., et al. (2024). PostBP: A Python library to analyze outputs from wildfire growth models. MethodsX, 13, 102816. DOI:10.1016/j.mex.2024.102816

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "postbp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "postbp",
    "author": null,
    "author_email": "Ning Liu <ning.liu@nrcan-rncan.gc.ca>",
    "download_url": "https://files.pythonhosted.org/packages/c1/b0/03a1cd0c6ae1f4724015eb86f1a69f32f7d324df9d261d6c5142ae2b2fae/postbp-1.2.1.tar.gz",
    "platform": null,
    "description": "# PostBP: A Python Library for Post-Processing Outputs from Wildfire Growth Models\n\n[![image](https://img.shields.io/pypi/v/postbp.svg)](https://pypi.python.org/pypi/postbp)\n[![image](https://img.shields.io/conda/vn/conda-forge/postbp.svg)](https://anaconda.org/conda-forge/postbp)\n\n\n**A Python Library**\n\n\n-   Free software: MIT License\n-   Documentation: https://nliu-cfs.github.io/postbp\n    \n\n## Introduction\n\nPostBP is an open-source Python library designed to simplify the analysis and visualization of outputs from wildfire growth models (FGMs), such as the Canadian Burn-P3 model. The library extracts critical fire behavior metrics, including fire spread likelihoods, source-sink ratios, and burn probabilities, providing actionable insights for wildfire risk assessments and mitigation planning.\n\nWith PostBP, users can transform raw simulation outputs into intuitive metrics and maps, streamlining decision-making for wildfire management.\n\n---\n\n## Key Features\n\n- **Hexagonal Patch Network**: Discretize landscapes into hexagonal patches for intuitive fire behavior analysis.\n- **Fire Spread Analysis**:\n  - Compute fire spread likelihoods between pairs of hexagonal patches.\n  - Visualize fire spread patterns with rose diagrams.\n- **Burn and Ignition Probabilities**:\n  - Calculate patch-level burn probabilities and ignition likelihoods.\n  - Supports user-defined thresholds for burned area classification.\n- **Source-Sink Analysis**:\n  - Quantify the tendency of patches to act as fire sources or sinks.\n- **Customizable Inputs**:\n  - Supports outputs from Burn-P3 and other FGMs with compatible formats.\n- **Flexible Outputs**:\n  - Save results as GeoDataFrames, GeoJSON, Apache GeoParquet, or ESRI Shapefiles.\n\n---\n\n## Installation\n\nPostBP can be installed using pip, it is recommended to install PostBP in a dedicated Python environment to avoid dependency conflicts.:\n\n```bash\npip install postbp\n\n```\n\n## Documentation and Support\n\nComprehensive documentation is available at:\nhttps://nliu-cfs.github.io/postbp\n\nFor any issues or inquiries, please open an issue on the GitHub repository.\n\n## Citation\n\nIf you use PostBP in your research, please cite:\n\nLiu, N., Yemshanov, D., Parisien, M.-A., et al. (2024). PostBP: A Python library to analyze outputs from wildfire growth models. MethodsX, 13, 102816. DOI:10.1016/j.mex.2024.102816\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "A Python Library",
    "version": "1.2.1",
    "project_urls": {
        "Homepage": "https://github.com/nliu-cfs/postbp"
    },
    "split_keywords": [
        "postbp"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "34baf92ede412f6af6857d6535a793fb0b9d6fde00ddc00090d01b5a821caf24",
                "md5": "6fcd4771ac7906deffcd6ad1fd4b99b2",
                "sha256": "de3f88f843264b8fdfe765585af7bf9e063a65c9167238a48ff949c5f4ed1e19"
            },
            "downloads": -1,
            "filename": "postbp-1.2.1-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6fcd4771ac7906deffcd6ad1fd4b99b2",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.8",
            "size": 17200,
            "upload_time": "2024-12-06T21:03:56",
            "upload_time_iso_8601": "2024-12-06T21:03:56.463307Z",
            "url": "https://files.pythonhosted.org/packages/34/ba/f92ede412f6af6857d6535a793fb0b9d6fde00ddc00090d01b5a821caf24/postbp-1.2.1-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c1b003a1cd0c6ae1f4724015eb86f1a69f32f7d324df9d261d6c5142ae2b2fae",
                "md5": "1b1f624d0c40367f07bc8e9381b1f082",
                "sha256": "b81781625e600c01cb2efe6aa9e352a4eac367fdee3aa27b4b22dc10f5a664f4"
            },
            "downloads": -1,
            "filename": "postbp-1.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "1b1f624d0c40367f07bc8e9381b1f082",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 37824841,
            "upload_time": "2024-12-06T21:03:59",
            "upload_time_iso_8601": "2024-12-06T21:03:59.741340Z",
            "url": "https://files.pythonhosted.org/packages/c1/b0/03a1cd0c6ae1f4724015eb86f1a69f32f7d324df9d261d6c5142ae2b2fae/postbp-1.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-06 21:03:59",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "nliu-cfs",
    "github_project": "postbp",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "geopandas",
            "specs": []
        },
        {
            "name": "shapely",
            "specs": []
        },
        {
            "name": "windrose",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        }
    ],
    "lcname": "postbp"
}
        
Elapsed time: 0.38566s