# PostBP: A Python Library for Post-Processing Outputs from Wildfire Growth Models
[![image](https://img.shields.io/pypi/v/postbp.svg)](https://pypi.python.org/pypi/postbp)
[![image](https://img.shields.io/conda/vn/conda-forge/postbp.svg)](https://anaconda.org/conda-forge/postbp)
**A Python Library**
- Free software: MIT License
- Documentation: https://nliu-cfs.github.io/postbp
## Introduction
PostBP is an open-source Python library designed to simplify the analysis and visualization of outputs from wildfire growth models (FGMs), such as the Canadian Burn-P3 model. The library extracts critical fire behavior metrics, including fire spread likelihoods, source-sink ratios, and burn probabilities, providing actionable insights for wildfire risk assessments and mitigation planning.
With PostBP, users can transform raw simulation outputs into intuitive metrics and maps, streamlining decision-making for wildfire management.
---
## Key Features
- **Hexagonal Patch Network**: Discretize landscapes into hexagonal patches for intuitive fire behavior analysis.
- **Fire Spread Analysis**:
- Compute fire spread likelihoods between pairs of hexagonal patches.
- Visualize fire spread patterns with rose diagrams.
- **Burn and Ignition Probabilities**:
- Calculate patch-level burn probabilities and ignition likelihoods.
- Supports user-defined thresholds for burned area classification.
- **Source-Sink Analysis**:
- Quantify the tendency of patches to act as fire sources or sinks.
- **Customizable Inputs**:
- Supports outputs from Burn-P3 and other FGMs with compatible formats.
- **Flexible Outputs**:
- Save results as GeoDataFrames, GeoJSON, Apache GeoParquet, or ESRI Shapefiles.
---
## Installation
PostBP can be installed using pip, it is recommended to install PostBP in a dedicated Python environment to avoid dependency conflicts.:
```bash
pip install postbp
```
## Documentation and Support
Comprehensive documentation is available at:
https://nliu-cfs.github.io/postbp
For any issues or inquiries, please open an issue on the GitHub repository.
## Citation
If you use PostBP in your research, please cite:
Liu, N., Yemshanov, D., Parisien, M.-A., et al. (2024). PostBP: A Python library to analyze outputs from wildfire growth models. MethodsX, 13, 102816. DOI:10.1016/j.mex.2024.102816
Raw data
{
"_id": null,
"home_page": null,
"name": "postbp",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "postbp",
"author": null,
"author_email": "Ning Liu <ning.liu@nrcan-rncan.gc.ca>",
"download_url": "https://files.pythonhosted.org/packages/c1/b0/03a1cd0c6ae1f4724015eb86f1a69f32f7d324df9d261d6c5142ae2b2fae/postbp-1.2.1.tar.gz",
"platform": null,
"description": "# PostBP: A Python Library for Post-Processing Outputs from Wildfire Growth Models\n\n[![image](https://img.shields.io/pypi/v/postbp.svg)](https://pypi.python.org/pypi/postbp)\n[![image](https://img.shields.io/conda/vn/conda-forge/postbp.svg)](https://anaconda.org/conda-forge/postbp)\n\n\n**A Python Library**\n\n\n- Free software: MIT License\n- Documentation: https://nliu-cfs.github.io/postbp\n \n\n## Introduction\n\nPostBP is an open-source Python library designed to simplify the analysis and visualization of outputs from wildfire growth models (FGMs), such as the Canadian Burn-P3 model. The library extracts critical fire behavior metrics, including fire spread likelihoods, source-sink ratios, and burn probabilities, providing actionable insights for wildfire risk assessments and mitigation planning.\n\nWith PostBP, users can transform raw simulation outputs into intuitive metrics and maps, streamlining decision-making for wildfire management.\n\n---\n\n## Key Features\n\n- **Hexagonal Patch Network**: Discretize landscapes into hexagonal patches for intuitive fire behavior analysis.\n- **Fire Spread Analysis**:\n - Compute fire spread likelihoods between pairs of hexagonal patches.\n - Visualize fire spread patterns with rose diagrams.\n- **Burn and Ignition Probabilities**:\n - Calculate patch-level burn probabilities and ignition likelihoods.\n - Supports user-defined thresholds for burned area classification.\n- **Source-Sink Analysis**:\n - Quantify the tendency of patches to act as fire sources or sinks.\n- **Customizable Inputs**:\n - Supports outputs from Burn-P3 and other FGMs with compatible formats.\n- **Flexible Outputs**:\n - Save results as GeoDataFrames, GeoJSON, Apache GeoParquet, or ESRI Shapefiles.\n\n---\n\n## Installation\n\nPostBP can be installed using pip, it is recommended to install PostBP in a dedicated Python environment to avoid dependency conflicts.:\n\n```bash\npip install postbp\n\n```\n\n## Documentation and Support\n\nComprehensive documentation is available at:\nhttps://nliu-cfs.github.io/postbp\n\nFor any issues or inquiries, please open an issue on the GitHub repository.\n\n## Citation\n\nIf you use PostBP in your research, please cite:\n\nLiu, N., Yemshanov, D., Parisien, M.-A., et al. (2024). PostBP: A Python library to analyze outputs from wildfire growth models. MethodsX, 13, 102816. DOI:10.1016/j.mex.2024.102816\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "A Python Library",
"version": "1.2.1",
"project_urls": {
"Homepage": "https://github.com/nliu-cfs/postbp"
},
"split_keywords": [
"postbp"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "34baf92ede412f6af6857d6535a793fb0b9d6fde00ddc00090d01b5a821caf24",
"md5": "6fcd4771ac7906deffcd6ad1fd4b99b2",
"sha256": "de3f88f843264b8fdfe765585af7bf9e063a65c9167238a48ff949c5f4ed1e19"
},
"downloads": -1,
"filename": "postbp-1.2.1-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "6fcd4771ac7906deffcd6ad1fd4b99b2",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.8",
"size": 17200,
"upload_time": "2024-12-06T21:03:56",
"upload_time_iso_8601": "2024-12-06T21:03:56.463307Z",
"url": "https://files.pythonhosted.org/packages/34/ba/f92ede412f6af6857d6535a793fb0b9d6fde00ddc00090d01b5a821caf24/postbp-1.2.1-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c1b003a1cd0c6ae1f4724015eb86f1a69f32f7d324df9d261d6c5142ae2b2fae",
"md5": "1b1f624d0c40367f07bc8e9381b1f082",
"sha256": "b81781625e600c01cb2efe6aa9e352a4eac367fdee3aa27b4b22dc10f5a664f4"
},
"downloads": -1,
"filename": "postbp-1.2.1.tar.gz",
"has_sig": false,
"md5_digest": "1b1f624d0c40367f07bc8e9381b1f082",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 37824841,
"upload_time": "2024-12-06T21:03:59",
"upload_time_iso_8601": "2024-12-06T21:03:59.741340Z",
"url": "https://files.pythonhosted.org/packages/c1/b0/03a1cd0c6ae1f4724015eb86f1a69f32f7d324df9d261d6c5142ae2b2fae/postbp-1.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-06 21:03:59",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "nliu-cfs",
"github_project": "postbp",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "numpy",
"specs": []
},
{
"name": "pandas",
"specs": []
},
{
"name": "geopandas",
"specs": []
},
{
"name": "shapely",
"specs": []
},
{
"name": "windrose",
"specs": []
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "tqdm",
"specs": []
}
],
"lcname": "postbp"
}