proteomics-downstream-analysis


Nameproteomics-downstream-analysis JSON
Version 0.1.3 PyPI version JSON
download
home_pagehttps://github.com/vuductung/proteomics-downstream-anlaysis
SummaryA package for downstream data analysis of proteomics data
upload_time2023-07-05 15:48:33
maintainer
docs_urlNone
authorVu Duc Tung
requires_python>=3.6.1
license
keywords proteomics downstream analysis data analysis data visualization mass spectrometry
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            <details>
  <summary>Table of Contents</summary>
  <ol>
    <li>
      <a href="#package-description">Package description</a>
      <ul>
      </ul>
    </li>
    <li>
      <a href="#getting-started">Getting Started</a>
      <ul>
      </ul>
    </li>
    <li><a href="#usage">Usage</a></li>
    <li><a href="#contributing">Contributing</a></li>
    <li><a href="#license">License</a></li>
</details>

<p align="right">(<a href="#readme-top">back to top</a>)</p>

## Package description
Introducing Proteomics Downstream Analysis v0.1.0, a comprehensive Python package designed to simplify and streamline the process of downstream data analysis for proteomics research. This package offers a user-friendly and efficient way to handle, manipulate, process, and visualize large proteomics datasets, helping researchers gain valuable insights from their data more quickly and effectively.

Key features of proteomics_downstream_analysis v0.1.0 include:

Data import and preprocessing: Easily import and preprocess raw proteomics data from DIA-NN. Automatically handle missing values, normalization, and data transformation as needed.

Statistical analysis: Perform essential statistical tests such as t-tests, ANOVA, and multiple testing correction methods to assess the significance of differentially expressed proteins.

Enrichment analysis: Conduct functional enrichment analysis to identify over-represented functional categories, biological processes, or pathways in your protein sets, supporting popular databases like Gene Ontology and KEGG.

Clustering and dimensionality reduction: Apply advanced unsupervised learning techniques to group similar proteins and uncover underlying biological patterns. Techniques include hierarchical clustering, k-means clustering, principal component analysis (PCA), and t-distributed stochastic neighbor embedding (t-SNE).

Customizable data visualization: Create stunning and informative visualizations to better understand and communicate your results. Generate heatmaps, volcano plots, Venn diagrams, and more with full customization options.

Integration with existing tools: Compatibility with popular Python libraries including NumPy, pandas, and matplotlib, allowing you to seamlessly integrate this package into your existing data analysis workflow.

Proteomics Downstream Analysis v0.1.0 provides a solid foundation for your proteomics research needs.


<p align="right">(<a href="#readme-top">back to top</a>)</p>


## Getting Started

ProteomicsDownstreamAnalysis can be installed using:
```
pip install proteomics-downstream-analysis
```

<p align="right">(<a href="#readme-top">back to top</a>)</p>


## Usage
```
import proteomics_downstream_analysis as pda
```
<p align="right">(<a href="#readme-top">back to top</a>)</p>

## Contributing

Contribution is much appreciated. Happy to get feedback and suggestions! 

Should you have a suggestion that could enhance this project, kindly fork the repository and create a pull request. You may also open an issue labeled as “improvement”. 

<p align="right">(<a href="#readme-top">back to top</a>)</p>


## License

Distributed under the MIT License. See `MIT.txt` for more information.

<p align="right">(<a href="#readme-top">back to top</a>)</p>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/vuductung/proteomics-downstream-anlaysis",
    "name": "proteomics-downstream-analysis",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6.1",
    "maintainer_email": "",
    "keywords": "proteomics,downstream analysis,data analysis,data visualization,mass spectrometry",
    "author": "Vu Duc Tung",
    "author_email": "tungvuduc@outlook.de",
    "download_url": "https://files.pythonhosted.org/packages/3c/b4/46b2bfffcb004cf1a70e07bd721d05ffeacebf2d32c8e71eac5635ea476c/proteomics_downstream_analysis-0.1.3.tar.gz",
    "platform": null,
    "description": "<details>\n  <summary>Table of Contents</summary>\n  <ol>\n    <li>\n      <a href=\"#package-description\">Package description</a>\n      <ul>\n      </ul>\n    </li>\n    <li>\n      <a href=\"#getting-started\">Getting Started</a>\n      <ul>\n      </ul>\n    </li>\n    <li><a href=\"#usage\">Usage</a></li>\n    <li><a href=\"#contributing\">Contributing</a></li>\n    <li><a href=\"#license\">License</a></li>\n</details>\n\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n\n## Package description\nIntroducing Proteomics Downstream Analysis v0.1.0, a comprehensive Python package designed to simplify and streamline the process of downstream data analysis for proteomics research. This package offers a user-friendly and efficient way to handle, manipulate, process, and visualize large proteomics datasets, helping researchers gain valuable insights from their data more quickly and effectively.\n\nKey features of proteomics_downstream_analysis v0.1.0 include:\n\nData import and preprocessing: Easily import and preprocess raw proteomics data from DIA-NN. Automatically handle missing values, normalization, and data transformation as needed.\n\nStatistical analysis: Perform essential statistical tests such as t-tests, ANOVA, and multiple testing correction methods to assess the significance of differentially expressed proteins.\n\nEnrichment analysis: Conduct functional enrichment analysis to identify over-represented functional categories, biological processes, or pathways in your protein sets, supporting popular databases like Gene Ontology and KEGG.\n\nClustering and dimensionality reduction: Apply advanced unsupervised learning techniques to group similar proteins and uncover underlying biological patterns. Techniques include hierarchical clustering, k-means clustering, principal component analysis (PCA), and t-distributed stochastic neighbor embedding (t-SNE).\n\nCustomizable data visualization: Create stunning and informative visualizations to better understand and communicate your results. Generate heatmaps, volcano plots, Venn diagrams, and more with full customization options.\n\nIntegration with existing tools: Compatibility with popular Python libraries including NumPy, pandas, and matplotlib, allowing you to seamlessly integrate this package into your existing data analysis workflow.\n\nProteomics Downstream Analysis v0.1.0 provides a solid foundation for your proteomics research needs.\n\n\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n\n\n## Getting Started\n\nProteomicsDownstreamAnalysis can be installed using:\n```\npip install proteomics-downstream-analysis\n```\n\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n\n\n## Usage\n```\nimport proteomics_downstream_analysis as pda\n```\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n\n## Contributing\n\nContribution is much appreciated. Happy to get feedback and suggestions! \n\nShould you have a suggestion that could enhance this project, kindly fork the repository and create a pull request. You may also open an issue labeled as \u201cimprovement\u201d. \n\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n\n\n## License\n\nDistributed under the MIT License. See `MIT.txt` for more information.\n\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A package for downstream data analysis of proteomics data",
    "version": "0.1.3",
    "project_urls": {
        "Homepage": "https://github.com/vuductung/proteomics-downstream-anlaysis"
    },
    "split_keywords": [
        "proteomics",
        "downstream analysis",
        "data analysis",
        "data visualization",
        "mass spectrometry"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3ea7a9a70faded896b43a17357a1c90dfb42f2388f6910e725d45e57c962a45d",
                "md5": "b6f99781a58909d49429bb6299395624",
                "sha256": "548f72fc50c4383ae7511360c04da091bc169802086e4452408117a8a77036e6"
            },
            "downloads": -1,
            "filename": "proteomics_downstream_analysis-0.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b6f99781a58909d49429bb6299395624",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6.1",
            "size": 31288,
            "upload_time": "2023-07-05T15:48:31",
            "upload_time_iso_8601": "2023-07-05T15:48:31.689689Z",
            "url": "https://files.pythonhosted.org/packages/3e/a7/a9a70faded896b43a17357a1c90dfb42f2388f6910e725d45e57c962a45d/proteomics_downstream_analysis-0.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3cb446b2bfffcb004cf1a70e07bd721d05ffeacebf2d32c8e71eac5635ea476c",
                "md5": "0a70259e144ee6587da958763d9ed187",
                "sha256": "04bd6c1024abd1e8c1a7e04b35b16a47266c357ada50ccffa989e32d197e0b7b"
            },
            "downloads": -1,
            "filename": "proteomics_downstream_analysis-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "0a70259e144ee6587da958763d9ed187",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6.1",
            "size": 26778,
            "upload_time": "2023-07-05T15:48:33",
            "upload_time_iso_8601": "2023-07-05T15:48:33.184462Z",
            "url": "https://files.pythonhosted.org/packages/3c/b4/46b2bfffcb004cf1a70e07bd721d05ffeacebf2d32c8e71eac5635ea476c/proteomics_downstream_analysis-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-05 15:48:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "vuductung",
    "github_project": "proteomics-downstream-anlaysis",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "proteomics-downstream-analysis"
}
        
Elapsed time: 0.10305s