<details>
<summary>Table of Contents</summary>
<ol>
<li>
<a href="#package-description">Package description</a>
<ul>
</ul>
</li>
<li>
<a href="#getting-started">Getting Started</a>
<ul>
</ul>
</li>
<li><a href="#usage">Usage</a></li>
<li><a href="#contributing">Contributing</a></li>
<li><a href="#license">License</a></li>
</details>
<p align="right">(<a href="#readme-top">back to top</a>)</p>
## Package description
Introducing Proteomics Downstream Analysis v0.1.0, a comprehensive Python package designed to simplify and streamline the process of downstream data analysis for proteomics research. This package offers a user-friendly and efficient way to handle, manipulate, process, and visualize large proteomics datasets, helping researchers gain valuable insights from their data more quickly and effectively.
Key features of proteomics_downstream_analysis v0.1.0 include:
Data import and preprocessing: Easily import and preprocess raw proteomics data from DIA-NN. Automatically handle missing values, normalization, and data transformation as needed.
Statistical analysis: Perform essential statistical tests such as t-tests, ANOVA, and multiple testing correction methods to assess the significance of differentially expressed proteins.
Enrichment analysis: Conduct functional enrichment analysis to identify over-represented functional categories, biological processes, or pathways in your protein sets, supporting popular databases like Gene Ontology and KEGG.
Clustering and dimensionality reduction: Apply advanced unsupervised learning techniques to group similar proteins and uncover underlying biological patterns. Techniques include hierarchical clustering, k-means clustering, principal component analysis (PCA), and t-distributed stochastic neighbor embedding (t-SNE).
Customizable data visualization: Create stunning and informative visualizations to better understand and communicate your results. Generate heatmaps, volcano plots, Venn diagrams, and more with full customization options.
Integration with existing tools: Compatibility with popular Python libraries including NumPy, pandas, and matplotlib, allowing you to seamlessly integrate this package into your existing data analysis workflow.
Proteomics Downstream Analysis v0.1.0 provides a solid foundation for your proteomics research needs.
<p align="right">(<a href="#readme-top">back to top</a>)</p>
## Getting Started
ProteomicsDownstreamAnalysis can be installed using:
```
pip install proteomics-downstream-analysis
```
<p align="right">(<a href="#readme-top">back to top</a>)</p>
## Usage
```
import proteomics_downstream_analysis as pda
```
<p align="right">(<a href="#readme-top">back to top</a>)</p>
## Contributing
Contribution is much appreciated. Happy to get feedback and suggestions!
Should you have a suggestion that could enhance this project, kindly fork the repository and create a pull request. You may also open an issue labeled as “improvement”.
<p align="right">(<a href="#readme-top">back to top</a>)</p>
## License
Distributed under the MIT License. See `MIT.txt` for more information.
<p align="right">(<a href="#readme-top">back to top</a>)</p>
Raw data
{
"_id": null,
"home_page": "https://github.com/vuductung/proteomics-downstream-anlaysis",
"name": "proteomics-downstream-analysis",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6.1",
"maintainer_email": "",
"keywords": "proteomics,downstream analysis,data analysis,data visualization,mass spectrometry",
"author": "Vu Duc Tung",
"author_email": "tungvuduc@outlook.de",
"download_url": "https://files.pythonhosted.org/packages/3c/b4/46b2bfffcb004cf1a70e07bd721d05ffeacebf2d32c8e71eac5635ea476c/proteomics_downstream_analysis-0.1.3.tar.gz",
"platform": null,
"description": "<details>\n <summary>Table of Contents</summary>\n <ol>\n <li>\n <a href=\"#package-description\">Package description</a>\n <ul>\n </ul>\n </li>\n <li>\n <a href=\"#getting-started\">Getting Started</a>\n <ul>\n </ul>\n </li>\n <li><a href=\"#usage\">Usage</a></li>\n <li><a href=\"#contributing\">Contributing</a></li>\n <li><a href=\"#license\">License</a></li>\n</details>\n\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n\n## Package description\nIntroducing Proteomics Downstream Analysis v0.1.0, a comprehensive Python package designed to simplify and streamline the process of downstream data analysis for proteomics research. This package offers a user-friendly and efficient way to handle, manipulate, process, and visualize large proteomics datasets, helping researchers gain valuable insights from their data more quickly and effectively.\n\nKey features of proteomics_downstream_analysis v0.1.0 include:\n\nData import and preprocessing: Easily import and preprocess raw proteomics data from DIA-NN. Automatically handle missing values, normalization, and data transformation as needed.\n\nStatistical analysis: Perform essential statistical tests such as t-tests, ANOVA, and multiple testing correction methods to assess the significance of differentially expressed proteins.\n\nEnrichment analysis: Conduct functional enrichment analysis to identify over-represented functional categories, biological processes, or pathways in your protein sets, supporting popular databases like Gene Ontology and KEGG.\n\nClustering and dimensionality reduction: Apply advanced unsupervised learning techniques to group similar proteins and uncover underlying biological patterns. Techniques include hierarchical clustering, k-means clustering, principal component analysis (PCA), and t-distributed stochastic neighbor embedding (t-SNE).\n\nCustomizable data visualization: Create stunning and informative visualizations to better understand and communicate your results. Generate heatmaps, volcano plots, Venn diagrams, and more with full customization options.\n\nIntegration with existing tools: Compatibility with popular Python libraries including NumPy, pandas, and matplotlib, allowing you to seamlessly integrate this package into your existing data analysis workflow.\n\nProteomics Downstream Analysis v0.1.0 provides a solid foundation for your proteomics research needs.\n\n\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n\n\n## Getting Started\n\nProteomicsDownstreamAnalysis can be installed using:\n```\npip install proteomics-downstream-analysis\n```\n\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n\n\n## Usage\n```\nimport proteomics_downstream_analysis as pda\n```\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n\n## Contributing\n\nContribution is much appreciated. Happy to get feedback and suggestions! \n\nShould you have a suggestion that could enhance this project, kindly fork the repository and create a pull request. You may also open an issue labeled as \u201cimprovement\u201d. \n\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n\n\n## License\n\nDistributed under the MIT License. See `MIT.txt` for more information.\n\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n",
"bugtrack_url": null,
"license": "",
"summary": "A package for downstream data analysis of proteomics data",
"version": "0.1.3",
"project_urls": {
"Homepage": "https://github.com/vuductung/proteomics-downstream-anlaysis"
},
"split_keywords": [
"proteomics",
"downstream analysis",
"data analysis",
"data visualization",
"mass spectrometry"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3ea7a9a70faded896b43a17357a1c90dfb42f2388f6910e725d45e57c962a45d",
"md5": "b6f99781a58909d49429bb6299395624",
"sha256": "548f72fc50c4383ae7511360c04da091bc169802086e4452408117a8a77036e6"
},
"downloads": -1,
"filename": "proteomics_downstream_analysis-0.1.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b6f99781a58909d49429bb6299395624",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6.1",
"size": 31288,
"upload_time": "2023-07-05T15:48:31",
"upload_time_iso_8601": "2023-07-05T15:48:31.689689Z",
"url": "https://files.pythonhosted.org/packages/3e/a7/a9a70faded896b43a17357a1c90dfb42f2388f6910e725d45e57c962a45d/proteomics_downstream_analysis-0.1.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3cb446b2bfffcb004cf1a70e07bd721d05ffeacebf2d32c8e71eac5635ea476c",
"md5": "0a70259e144ee6587da958763d9ed187",
"sha256": "04bd6c1024abd1e8c1a7e04b35b16a47266c357ada50ccffa989e32d197e0b7b"
},
"downloads": -1,
"filename": "proteomics_downstream_analysis-0.1.3.tar.gz",
"has_sig": false,
"md5_digest": "0a70259e144ee6587da958763d9ed187",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6.1",
"size": 26778,
"upload_time": "2023-07-05T15:48:33",
"upload_time_iso_8601": "2023-07-05T15:48:33.184462Z",
"url": "https://files.pythonhosted.org/packages/3c/b4/46b2bfffcb004cf1a70e07bd721d05ffeacebf2d32c8e71eac5635ea476c/proteomics_downstream_analysis-0.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-07-05 15:48:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "vuductung",
"github_project": "proteomics-downstream-anlaysis",
"travis_ci": true,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "proteomics-downstream-analysis"
}