pruningdistribution


Namepruningdistribution JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/DEEP-CGPS/PruningDistribution
SummaryPruning of CNNs with distributions
upload_time2024-01-19 02:49:02
maintainer
docs_urlNone
authorDEEP-CGPS
requires_python>=3.6
license
keywords python pytorch pruning cnn distribution flops
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# PruningDistribution



Library for pruning convolutional neural networks by varying the pruning distribution.



## Installation



PruningDistribution can be installed using pip:



```bash

pip3 install PruningDistribution

```



or if you want to run the latest version of the code, you can install from git:



```bash

git clone https://github.com/DEEP-CGPS/PruningDistribution

cd PruningDistribution

pip3 install -r requirements.txt

```



****



## Usage



### Main function



The main function "PruningDistribution"  provides all the tools necessary to prune, train, and generate performance metrics by varying the pruning distribution. 



#### Parameters



Parse command-line arguments for configuring and training a neural network model.

    

- `model_architecture (str):` Specify the architecture of the model (e.g., VGG16, AlexNet, etc.).

- `method (str):` Specify the training method (e.g., SenpisFaster, random, weight).

- `dataset (str):` Specify the dataset for training (e.g., CIFAR10, "Name of custom dataset").

- `batch_size (int):` Set the batch size for training.

- `num_epochs (int):` Specify the number of training epochs.

- `learning_rate (float):` Set the learning rate for the optimizer.

- `optimizer_val (str):` Specify the optimizer for training (e.g., SGD, Adam, etc.).

- `model_type (str):` Specify the type of the model (e.g., PRUNED or UNPRUNED).

- `device (str):` Specify the device for training (e.g., "cuda:0" for GPU).

- `model_input (torch.Tensor):` Input tensor for the model (default is a tensor of ones).

- `eval_metric (str):` Specify the evaluation metric (e.g., accuracy, f1).

- `seed (int):` Set the seed for random pruning operations.

- `list_pruning (list):` Specify the list of pruning ratios for each layer.



#### Minimal working example



```python



## 1- Definition of arguments for function usage



import sys

import torch

import torchvision

from pruningdistribution import *

import argparse

sys.argv = ['']



import argparse

import torch



parser = argparse.ArgumentParser(description='Parameters for training')



parser.add_argument('--model_architecture', type=str, default="VGG16", 

                    help='Specify the architecture of the model (e.g., VGG16, AlexNet, etc.).')



parser.add_argument('--method', type=str, default="random", 

                    help='Specify the training method (e.g., SenpisFaster, random, weight).')



parser.add_argument('--dataset', type=str, default="CIFAR10", 

                    help='Specify the dataset for training (e.g., CIFAR10, "Name of custom dataset").')



parser.add_argument('--batch_size', type=int, default=8, 

                    help='Set the batch size for training.')



parser.add_argument('--num_epochs', type=int, default=1, 

                    help='Specify the number of training epochs.')



parser.add_argument('--learning_rate', type=float, default=1e-3, 

                    help='Set the learning rate for the optimizer.')



parser.add_argument('--optimizer_val', type=str, default="SGD", 

                    help='Specify the optimizer for training (e.g., SGD, Adam, etc.).')



parser.add_argument('--model_type', type=str, default="UNPRUNED", 

                    help='Specify the type of the model (e.g., PRUNED or UNPRUNED).')



parser.add_argument('--device', type=str, default=None, 

                    help='Specify the device for training (e.g., "cuda:0" for GPU).')



parser.add_argument('--model_input', default=torch.ones((1, 3, 224, 224)), 

                    help='Input tensor for the model (default is a tensor of ones).')



parser.add_argument('--eval_metric', default="accuracy", 

                    help='Specify the evaluation metric (e.g., accuracy, f1).')



parser.add_argument('--seed', type=int, default=23, 

                    help='Set the seed for random pruning operations.')



parser.add_argument('--list_pruning', type=list, 

                    default=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0], 

                    help='Specify the list of pruning ratios for each layer.')



args = parser.parse_args()





args = parser.parse_args()



if args.device is None:

    import torch

    args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")



#Get Model, DATASET and TRAIN



model = get_model(10, args)

train_loader, test_loader, num_classes, trainset = get_dataset(args)

train_model(train_loader = train_loader,

            test_loader = test_loader,

            model = model,

            num_classes = num_classes,

            args = args)



#Prune trained model:



model = torch.load(f'models/{args.dataset}/{args.model_architecture}_{args.dataset}_{args.model_type}.pth')

model.to(args.device)

args.model_type = f'your_model_name_with_out_fine_tunning'

prune_model(model,num_classes,trainset, args)



```



### Submodules



pruningdistribution contains 8 modules that allow to train, prune, generate result tables, and identify model properties (e.g., parameters, number of layers):



#### modelParams:



Allows to obtain the total number of FLOPs, to generate the model summary, to obtain the number of convolutional layers and the FC.



#### train_epoch:



It is optional but it helps to train an epoch of the model, normally it is not used directly but it is used by the train_model module.



#### test_epoch:



It is optional but it helps to perform the test during the epoch of the model, normally it is not used directly but it is used by the train_model module.



#### train_model:



Given the input arguments, allows to train the desired convolutional neural network.



#### get_model:



Returns the desired model.



#### get_dataset:



Returns the desired dataset.



#### prune_model:



Prunes the model, taking into account the arguments.



#### evaluate_models:



Returns a dataframe containing the summary of the pruned model information, this to facilitate its later analysis.



## Citing



If you use this software for research or application purposes, please use the following citation:



```bibtex

@article{ ,

  title = {},

  journal = {SoftwareX},

  volume = {},

  pages = {},

  year = {},

  issn = {},

  doi = {},

  url = {},

  author = {},

}


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/DEEP-CGPS/PruningDistribution",
    "name": "pruningdistribution",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "python,pytorch,pruning,CNN,distribution,FLOPs",
    "author": "DEEP-CGPS",
    "author_email": "<est.cesar.pachon@unimilitar.edu.co>",
    "download_url": "https://files.pythonhosted.org/packages/f3/b2/0573f293e02453ee0712408fde15451eead9b3c25943839c6a7ca1ddcc45/pruningdistribution-0.1.0.tar.gz",
    "platform": null,
    "description": "\r\n# PruningDistribution\r\n\r\n\r\n\r\nLibrary for pruning convolutional neural networks by varying the pruning distribution.\r\n\r\n\r\n\r\n## Installation\r\n\r\n\r\n\r\nPruningDistribution can be installed using pip:\r\n\r\n\r\n\r\n```bash\r\n\r\npip3 install PruningDistribution\r\n\r\n```\r\n\r\n\r\n\r\nor if you want to run the latest version of the code, you can install from git:\r\n\r\n\r\n\r\n```bash\r\n\r\ngit clone https://github.com/DEEP-CGPS/PruningDistribution\r\n\r\ncd PruningDistribution\r\n\r\npip3 install -r requirements.txt\r\n\r\n```\r\n\r\n\r\n\r\n****\r\n\r\n\r\n\r\n## Usage\r\n\r\n\r\n\r\n### Main function\r\n\r\n\r\n\r\nThe main function \"PruningDistribution\"  provides all the tools necessary to prune, train, and generate performance metrics by varying the pruning distribution. \r\n\r\n\r\n\r\n#### Parameters\r\n\r\n\r\n\r\nParse command-line arguments for configuring and training a neural network model.\r\n\r\n    \r\n\r\n- `model_architecture (str):` Specify the architecture of the model (e.g., VGG16, AlexNet, etc.).\r\n\r\n- `method (str):` Specify the training method (e.g., SenpisFaster, random, weight).\r\n\r\n- `dataset (str):` Specify the dataset for training (e.g., CIFAR10, \"Name of custom dataset\").\r\n\r\n- `batch_size (int):` Set the batch size for training.\r\n\r\n- `num_epochs (int):` Specify the number of training epochs.\r\n\r\n- `learning_rate (float):` Set the learning rate for the optimizer.\r\n\r\n- `optimizer_val (str):` Specify the optimizer for training (e.g., SGD, Adam, etc.).\r\n\r\n- `model_type (str):` Specify the type of the model (e.g., PRUNED or UNPRUNED).\r\n\r\n- `device (str):` Specify the device for training (e.g., \"cuda:0\" for GPU).\r\n\r\n- `model_input (torch.Tensor):` Input tensor for the model (default is a tensor of ones).\r\n\r\n- `eval_metric (str):` Specify the evaluation metric (e.g., accuracy, f1).\r\n\r\n- `seed (int):` Set the seed for random pruning operations.\r\n\r\n- `list_pruning (list):` Specify the list of pruning ratios for each layer.\r\n\r\n\r\n\r\n#### Minimal working example\r\n\r\n\r\n\r\n```python\r\n\r\n\r\n\r\n## 1- Definition of arguments for function usage\r\n\r\n\r\n\r\nimport sys\r\n\r\nimport torch\r\n\r\nimport torchvision\r\n\r\nfrom pruningdistribution import *\r\n\r\nimport argparse\r\n\r\nsys.argv = ['']\r\n\r\n\r\n\r\nimport argparse\r\n\r\nimport torch\r\n\r\n\r\n\r\nparser = argparse.ArgumentParser(description='Parameters for training')\r\n\r\n\r\n\r\nparser.add_argument('--model_architecture', type=str, default=\"VGG16\", \r\n\r\n                    help='Specify the architecture of the model (e.g., VGG16, AlexNet, etc.).')\r\n\r\n\r\n\r\nparser.add_argument('--method', type=str, default=\"random\", \r\n\r\n                    help='Specify the training method (e.g., SenpisFaster, random, weight).')\r\n\r\n\r\n\r\nparser.add_argument('--dataset', type=str, default=\"CIFAR10\", \r\n\r\n                    help='Specify the dataset for training (e.g., CIFAR10, \"Name of custom dataset\").')\r\n\r\n\r\n\r\nparser.add_argument('--batch_size', type=int, default=8, \r\n\r\n                    help='Set the batch size for training.')\r\n\r\n\r\n\r\nparser.add_argument('--num_epochs', type=int, default=1, \r\n\r\n                    help='Specify the number of training epochs.')\r\n\r\n\r\n\r\nparser.add_argument('--learning_rate', type=float, default=1e-3, \r\n\r\n                    help='Set the learning rate for the optimizer.')\r\n\r\n\r\n\r\nparser.add_argument('--optimizer_val', type=str, default=\"SGD\", \r\n\r\n                    help='Specify the optimizer for training (e.g., SGD, Adam, etc.).')\r\n\r\n\r\n\r\nparser.add_argument('--model_type', type=str, default=\"UNPRUNED\", \r\n\r\n                    help='Specify the type of the model (e.g., PRUNED or UNPRUNED).')\r\n\r\n\r\n\r\nparser.add_argument('--device', type=str, default=None, \r\n\r\n                    help='Specify the device for training (e.g., \"cuda:0\" for GPU).')\r\n\r\n\r\n\r\nparser.add_argument('--model_input', default=torch.ones((1, 3, 224, 224)), \r\n\r\n                    help='Input tensor for the model (default is a tensor of ones).')\r\n\r\n\r\n\r\nparser.add_argument('--eval_metric', default=\"accuracy\", \r\n\r\n                    help='Specify the evaluation metric (e.g., accuracy, f1).')\r\n\r\n\r\n\r\nparser.add_argument('--seed', type=int, default=23, \r\n\r\n                    help='Set the seed for random pruning operations.')\r\n\r\n\r\n\r\nparser.add_argument('--list_pruning', type=list, \r\n\r\n                    default=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0], \r\n\r\n                    help='Specify the list of pruning ratios for each layer.')\r\n\r\n\r\n\r\nargs = parser.parse_args()\r\n\r\n\r\n\r\n\r\n\r\nargs = parser.parse_args()\r\n\r\n\r\n\r\nif args.device is None:\r\n\r\n    import torch\r\n\r\n    args.device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\r\n\r\n\r\n\r\n#Get Model, DATASET and TRAIN\r\n\r\n\r\n\r\nmodel = get_model(10, args)\r\n\r\ntrain_loader, test_loader, num_classes, trainset = get_dataset(args)\r\n\r\ntrain_model(train_loader = train_loader,\r\n\r\n            test_loader = test_loader,\r\n\r\n            model = model,\r\n\r\n            num_classes = num_classes,\r\n\r\n            args = args)\r\n\r\n\r\n\r\n#Prune trained model:\r\n\r\n\r\n\r\nmodel = torch.load(f'models/{args.dataset}/{args.model_architecture}_{args.dataset}_{args.model_type}.pth')\r\n\r\nmodel.to(args.device)\r\n\r\nargs.model_type = f'your_model_name_with_out_fine_tunning'\r\n\r\nprune_model(model,num_classes,trainset, args)\r\n\r\n\r\n\r\n```\r\n\r\n\r\n\r\n### Submodules\r\n\r\n\r\n\r\npruningdistribution contains 8 modules that allow to train, prune, generate result tables, and identify model properties (e.g., parameters, number of layers):\r\n\r\n\r\n\r\n#### modelParams:\r\n\r\n\r\n\r\nAllows to obtain the total number of FLOPs, to generate the model summary, to obtain the number of convolutional layers and the FC.\r\n\r\n\r\n\r\n#### train_epoch:\r\n\r\n\r\n\r\nIt is optional but it helps to train an epoch of the model, normally it is not used directly but it is used by the train_model module.\r\n\r\n\r\n\r\n#### test_epoch:\r\n\r\n\r\n\r\nIt is optional but it helps to perform the test during the epoch of the model, normally it is not used directly but it is used by the train_model module.\r\n\r\n\r\n\r\n#### train_model:\r\n\r\n\r\n\r\nGiven the input arguments, allows to train the desired convolutional neural network.\r\n\r\n\r\n\r\n#### get_model:\r\n\r\n\r\n\r\nReturns the desired model.\r\n\r\n\r\n\r\n#### get_dataset:\r\n\r\n\r\n\r\nReturns the desired dataset.\r\n\r\n\r\n\r\n#### prune_model:\r\n\r\n\r\n\r\nPrunes the model, taking into account the arguments.\r\n\r\n\r\n\r\n#### evaluate_models:\r\n\r\n\r\n\r\nReturns a dataframe containing the summary of the pruned model information, this to facilitate its later analysis.\r\n\r\n\r\n\r\n## Citing\r\n\r\n\r\n\r\nIf you use this software for research or application purposes, please use the following citation:\r\n\r\n\r\n\r\n```bibtex\r\n\r\n@article{ ,\r\n\r\n  title = {},\r\n\r\n  journal = {SoftwareX},\r\n\r\n  volume = {},\r\n\r\n  pages = {},\r\n\r\n  year = {},\r\n\r\n  issn = {},\r\n\r\n  doi = {},\r\n\r\n  url = {},\r\n\r\n  author = {},\r\n\r\n}\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Pruning of CNNs with distributions",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "https://github.com/DEEP-CGPS/PruningDistribution"
    },
    "split_keywords": [
        "python",
        "pytorch",
        "pruning",
        "cnn",
        "distribution",
        "flops"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "32b56eb3839272bd91dcad5828f4b57e170a34fffb9b775c4af12c7ee2f52328",
                "md5": "373bfa0cddea8995ac95bf1cf210ac4e",
                "sha256": "17a2682848ed1a56a9ca74a9c61227eaa1b2dd0f27b7ce4b0d0559074fc61842"
            },
            "downloads": -1,
            "filename": "pruningdistribution-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "373bfa0cddea8995ac95bf1cf210ac4e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 11559,
            "upload_time": "2024-01-19T02:48:59",
            "upload_time_iso_8601": "2024-01-19T02:48:59.077346Z",
            "url": "https://files.pythonhosted.org/packages/32/b5/6eb3839272bd91dcad5828f4b57e170a34fffb9b775c4af12c7ee2f52328/pruningdistribution-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f3b20573f293e02453ee0712408fde15451eead9b3c25943839c6a7ca1ddcc45",
                "md5": "7800e3a3f61f54d84c1301336b704859",
                "sha256": "dcd00a806dc0106f4b489a958a2c231f818ee365ef6913f63239d0cf7e96fd53"
            },
            "downloads": -1,
            "filename": "pruningdistribution-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "7800e3a3f61f54d84c1301336b704859",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 11651,
            "upload_time": "2024-01-19T02:49:02",
            "upload_time_iso_8601": "2024-01-19T02:49:02.649685Z",
            "url": "https://files.pythonhosted.org/packages/f3/b2/0573f293e02453ee0712408fde15451eead9b3c25943839c6a7ca1ddcc45/pruningdistribution-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-19 02:49:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "DEEP-CGPS",
    "github_project": "PruningDistribution",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "pruningdistribution"
}
        
Elapsed time: 1.81312s