[![Python package](https://github.com/MannLabs/py-lmd/actions/workflows/python-package.yml/badge.svg?branch=release)](https://github.com/MannLabs/py-lmd/actions/workflows/python-package.yml) [![Python package](https://img.shields.io/badge/version-v1.0.0-blue)](https://github.com/MannLabs/py-lmd/actions/workflows/python-package.yml) [![Python package](https://img.shields.io/badge/license-MIT-blue)](https://github.com/MannLabs/py-lmd/actions/workflows/python-package.yml)
[![website](https://img.shields.io/website?url=https%3A%2F%2Fmannlabs.github.io/py-lmd/html/index.html)](https://mannlabs.github.io/py-lmd/html/index.html)
![logo](https://github.com/MannLabs/py-lmd/assets/15019107/e7c619a2-69c9-4cb6-8723-fab94c8d3558)
Read, create and write cutting data for the Leica LMD6 & LMD7 microscope.
Build reproducible workflows to calibrate, import SVG files and convert single-cell segmentation masks.
Installation from Github
========================
py-lmd has been tested with **Python 3.8 and 3.9**.
To install the py-lmd library clone the Github repository and use pip to install the library in your current environment.
It is recommended to use the library with a conda environment. Please make sure that the package is installed editable
like described. Otherwise static glyph files might not be available.
We recommend installing the non-python dependencies with conda before installing py-lmd:
```
git clone https://github.com/MannLabs/py-lmd
conda create -n "py-lmd-env"
conda activate py-lmd-env
conda install python=3.9 scipy 'scikit-image>=0.19' numpy numba -c conda-forge
pip install -e .
```
If you are installing on an M1 apple silicon Mac you will need to install `numba` via conda instead of pip before proceeding with the installation of the py-lmd library.
```
conda install numba
```
Documentation
========================
The current documentation can be found under https://mannlabs.github.io/py-lmd/html/index.html.
Citing our Work
=================
py-lmd was developed by Georg Wallmann, Sophia Mädler and Niklas Schmacke in the labs of Veit Hornung and Matthias Mann. If you use our code please cite the [following manuscript](https://www.biorxiv.org/content/10.1101/2023.06.01.542416v1):
SPARCS, a platform for genome-scale CRISPR screening for spatial cellular phenotypes
Niklas Arndt Schmacke, Sophia Clara Maedler, Georg Wallmann, Andreas Metousis, Marleen Berouti, Hartmann Harz, Heinrich Leonhardt, Matthias Mann, Veit Hornung
bioRxiv 2023.06.01.542416; doi: https://doi.org/10.1101/2023.06.01.542416
Raw data
{
"_id": null,
"home_page": "https://github.com/MannLabs/py-lmd",
"name": "py-lmd",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": null,
"author": "Georg Wallmann, Sophia Maedler, Niklas Schmacke",
"author_email": "wallmann@biochem.mpg.de",
"download_url": "https://files.pythonhosted.org/packages/96/00/e527ae761b603a658b7518fb794d57181d938aedcaa87afa901e78f55e4c/py_lmd-1.0.0.tar.gz",
"platform": null,
"description": "\n[![Python package](https://github.com/MannLabs/py-lmd/actions/workflows/python-package.yml/badge.svg?branch=release)](https://github.com/MannLabs/py-lmd/actions/workflows/python-package.yml) [![Python package](https://img.shields.io/badge/version-v1.0.0-blue)](https://github.com/MannLabs/py-lmd/actions/workflows/python-package.yml) [![Python package](https://img.shields.io/badge/license-MIT-blue)](https://github.com/MannLabs/py-lmd/actions/workflows/python-package.yml)\n[![website](https://img.shields.io/website?url=https%3A%2F%2Fmannlabs.github.io/py-lmd/html/index.html)](https://mannlabs.github.io/py-lmd/html/index.html)\n\n![logo](https://github.com/MannLabs/py-lmd/assets/15019107/e7c619a2-69c9-4cb6-8723-fab94c8d3558)\n\nRead, create and write cutting data for the Leica LMD6 & LMD7 microscope.\nBuild reproducible workflows to calibrate, import SVG files and convert single-cell segmentation masks.\n\n\nInstallation from Github\n========================\npy-lmd has been tested with **Python 3.8 and 3.9**.\nTo install the py-lmd library clone the Github repository and use pip to install the library in your current environment.\nIt is recommended to use the library with a conda environment. Please make sure that the package is installed editable\nlike described. Otherwise static glyph files might not be available. \n\nWe recommend installing the non-python dependencies with conda before installing py-lmd:\n\n```\ngit clone https://github.com/MannLabs/py-lmd\n\nconda create -n \"py-lmd-env\"\nconda activate py-lmd-env\nconda install python=3.9 scipy 'scikit-image>=0.19' numpy numba -c conda-forge\npip install -e .\n\n```\n\nIf you are installing on an M1 apple silicon Mac you will need to install `numba` via conda instead of pip before proceeding with the installation of the py-lmd library.\n\n```\nconda install numba\n```\n \nDocumentation\n========================\nThe current documentation can be found under https://mannlabs.github.io/py-lmd/html/index.html.\n\nCiting our Work\n=================\n\npy-lmd was developed by Georg Wallmann, Sophia M\u00e4dler and Niklas Schmacke in the labs of Veit Hornung and Matthias Mann. If you use our code please cite the [following manuscript](https://www.biorxiv.org/content/10.1101/2023.06.01.542416v1):\n\nSPARCS, a platform for genome-scale CRISPR screening for spatial cellular phenotypes\nNiklas Arndt Schmacke, Sophia Clara Maedler, Georg Wallmann, Andreas Metousis, Marleen Berouti, Hartmann Harz, Heinrich Leonhardt, Matthias Mann, Veit Hornung\nbioRxiv 2023.06.01.542416; doi: https://doi.org/10.1101/2023.06.01.542416\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Read, Modify and Create new shape files for the Leica LMD6 & LMD7",
"version": "1.0.0",
"project_urls": {
"Bug Tracker": "https://github.com/MannLabs/py-lmd/issues",
"Documentation": "https://mannlabs.github.io/py-lmd/html/index.html",
"Homepage": "https://github.com/MannLabs/py-lmd"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4039ed99119f1b5a6a0f19a94547c7b48688b30c5dd2ebbae74344a6db1ac524",
"md5": "17f169819a1c38d15de89ab25b6e9ef5",
"sha256": "dea2a5a4912781655f97f768efd34efc456ef79bce517302ecf022cef2dfe43d"
},
"downloads": -1,
"filename": "py_lmd-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "17f169819a1c38d15de89ab25b6e9ef5",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 20156,
"upload_time": "2024-09-10T09:32:42",
"upload_time_iso_8601": "2024-09-10T09:32:42.891560Z",
"url": "https://files.pythonhosted.org/packages/40/39/ed99119f1b5a6a0f19a94547c7b48688b30c5dd2ebbae74344a6db1ac524/py_lmd-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9600e527ae761b603a658b7518fb794d57181d938aedcaa87afa901e78f55e4c",
"md5": "a79ff8c5df8f20659863a4e945753dd3",
"sha256": "735c968d31187c7a41ff8047796a94a01c25672a43b5c442b096c82e889f0584"
},
"downloads": -1,
"filename": "py_lmd-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "a79ff8c5df8f20659863a4e945753dd3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 20468,
"upload_time": "2024-09-10T09:32:44",
"upload_time_iso_8601": "2024-09-10T09:32:44.336106Z",
"url": "https://files.pythonhosted.org/packages/96/00/e527ae761b603a658b7518fb794d57181d938aedcaa87afa901e78f55e4c/py_lmd-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-10 09:32:44",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "MannLabs",
"github_project": "py-lmd",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "numpy",
"specs": [
[
"<",
"2.0.0"
]
]
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "lxml",
"specs": []
},
{
"name": "networkx",
"specs": [
[
">=",
"3.1"
]
]
},
{
"name": "scikit-image",
"specs": [
[
">=",
"0.19"
]
]
},
{
"name": "svgelements",
"specs": []
},
{
"name": "setuptools",
"specs": []
},
{
"name": "numba",
"specs": []
},
{
"name": "tqdm",
"specs": []
},
{
"name": "hilbertcurve",
"specs": []
}
],
"lcname": "py-lmd"
}