pyDOE3


NamepyDOE3 JSON
Version 1.3.0 PyPI version JSON
download
home_pageNone
SummaryDesign of experiments for Python
upload_time2025-09-02 08:36:05
maintainerNone
docs_urlNone
authorNone
requires_pythonNone
licenseNone
keywords doe design of experiments experimental design optimization python statistics
VCS
bugtrack_url
requirements numpy scipy ruff pytest
Travis-CI No Travis.
coveralls test coverage No coveralls.
            pyDOE3: An experimental design package for python
=================================================

[![Tests](https://github.com/relf/pyDOE3/actions/workflows/tests.yml/badge.svg)](https://github.com/relf/pyDOE3/actions/workflows/tests.yml)
[![Documentation](https://readthedocs.org/projects/pydoe3/badge/?version=latest)](https://pydoe3.readthedocs.io/en/latest/?badge=latest)
[![DOI](https://zenodo.org/badge/709347557.svg)](https://zenodo.org/doi/10.5281/zenodo.10958492)
[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)

This package is designed to help the scientist, engineer, statistician, etc., to
construct appropriate experimental designs.

Capabilities
------------

The package currently includes functions for creating designs for any
number of factors:

- **Factorial Designs**
  - General Full-Factorial (``fullfact``)
  - 2-level Full-Factorial (``ff2n``)
  - 2-level Fractional Factorial (``fracfact``)
  - Plackett-Burman (``pbdesign``)
  - Generalized Subset Designs (``gsd``)

- **Response-Surface Designs**
  - Box-Behnken (``bbdesign``)
  - Central-Composite (``ccdesign``)
  - Doehlert Design (``doehlert_shell_design``, ``doehlert_simplex_design``)

- **Randomized Designs**
  - Latin-Hypercube (``lhs``)

- **Low-Discrepancy Sequences**
  - Sukharev Grid (``sukharev_grid``)

- **Taguchi Designs**
  - Orthogonal arrays and robust design utilities (``taguchi_design``, ``compute_snr``)

- **Optimal Designs**
  - Advanced optimal design algorithms (``optimal_design``)
  - Optimality criteria (``A``, ``C``, ``D``, ``E``, ``G``, ``I``, ``S``, ``T``, ``V``)
  - Search algorithms (``Sequential (Dykstra)``, ``Simple Exchange (Wynn-Mitchell)``, ``Fedorov``, ``Modified Fedorov``, ``DETMAX``)

See [Documentation](https://pydoe3.readthedocs.io).

Installation
------------

```bash
pip install pyDOE3
```

Credits
-------

`pyDOE` original code was originally converted from code by the following
individuals for use with Scilab:

- Copyright (C) 2012-2013, Michael Baudin
- Copyright (C) 2012, Maria Christopoulou
- Copyright (C) 2010-2011, INRIA, Michael Baudin
- Copyright (C) 2009, Yann Collette
- Copyright (C) 2009, CEA, Jean-Marc Martinez

`pyDOE` was converted to Python by the following individual:

- Copyright (c) 2014, Abraham D. Lee

The following individuals forked `pyDOE` and worked on `pyDOE2`:

- Copyright (C) 2018, Rickard Sjögren and Daniel Svensson

`pyDOE3` is a fork of the [`pyDOE2`](https://github.com/clicumu/pyDOE2). 
It came to life to solve bugs and issues that remained unsolved in the
`pyDOE2` package.

License
-------

This package is provided under the *BSD License* (3-clause)

References
----------

- [Factorial designs](http://en.wikipedia.org/wiki/Factorial_experiment)
- [Plackett-Burman designs](http://en.wikipedia.org/wiki/Plackett-Burman_design)
- [Box-Behnken designs](http://en.wikipedia.org/wiki/Box-Behnken_design)
- [Central composite designs](http://en.wikipedia.org/wiki/Central_composite_design)
- [Doehlert Design](https://academic.oup.com/jrsssc/article/19/3/231/6882590)
- [Latin-Hypercube designs](http://en.wikipedia.org/wiki/Latin_hypercube_sampling)
- [Taguchi designs](http://en.wikipedia.org/wiki/Taguchi_methods)
- [Generalized Subset Designs](https://doi.org/10.1021/acs.analchem.7b00506)
- [Optimal experimental design](https://en.wikipedia.org/wiki/Optimal_experimental_design)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pyDOE3",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "DOE, design of experiments, experimental design, optimization, python, statistics",
    "author": null,
    "author_email": "R\u00e9mi Lafage <remi.lafage@onera.fr>",
    "download_url": "https://files.pythonhosted.org/packages/9e/1f/9f33b0e24ba0b7ee706749e10797138899d79f234c1ff1147e1a5b45e065/pydoe3-1.3.0.tar.gz",
    "platform": null,
    "description": "pyDOE3: An experimental design package for python\n=================================================\n\n[![Tests](https://github.com/relf/pyDOE3/actions/workflows/tests.yml/badge.svg)](https://github.com/relf/pyDOE3/actions/workflows/tests.yml)\n[![Documentation](https://readthedocs.org/projects/pydoe3/badge/?version=latest)](https://pydoe3.readthedocs.io/en/latest/?badge=latest)\n[![DOI](https://zenodo.org/badge/709347557.svg)](https://zenodo.org/doi/10.5281/zenodo.10958492)\n[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)\n\nThis package is designed to help the scientist, engineer, statistician, etc., to\nconstruct appropriate experimental designs.\n\nCapabilities\n------------\n\nThe package currently includes functions for creating designs for any\nnumber of factors:\n\n- **Factorial Designs**\n  - General Full-Factorial (``fullfact``)\n  - 2-level Full-Factorial (``ff2n``)\n  - 2-level Fractional Factorial (``fracfact``)\n  - Plackett-Burman (``pbdesign``)\n  - Generalized Subset Designs (``gsd``)\n\n- **Response-Surface Designs**\n  - Box-Behnken (``bbdesign``)\n  - Central-Composite (``ccdesign``)\n  - Doehlert Design (``doehlert_shell_design``, ``doehlert_simplex_design``)\n\n- **Randomized Designs**\n  - Latin-Hypercube (``lhs``)\n\n- **Low-Discrepancy Sequences**\n  - Sukharev Grid (``sukharev_grid``)\n\n- **Taguchi Designs**\n  - Orthogonal arrays and robust design utilities (``taguchi_design``, ``compute_snr``)\n\n- **Optimal Designs**\n  - Advanced optimal design algorithms (``optimal_design``)\n  - Optimality criteria (``A``, ``C``, ``D``, ``E``, ``G``, ``I``, ``S``, ``T``, ``V``)\n  - Search algorithms (``Sequential (Dykstra)``, ``Simple Exchange (Wynn-Mitchell)``, ``Fedorov``, ``Modified Fedorov``, ``DETMAX``)\n\nSee [Documentation](https://pydoe3.readthedocs.io).\n\nInstallation\n------------\n\n```bash\npip install pyDOE3\n```\n\nCredits\n-------\n\n`pyDOE` original code was originally converted from code by the following\nindividuals for use with Scilab:\n\n- Copyright (C) 2012-2013, Michael Baudin\n- Copyright (C) 2012, Maria Christopoulou\n- Copyright (C) 2010-2011, INRIA, Michael Baudin\n- Copyright (C) 2009, Yann Collette\n- Copyright (C) 2009, CEA, Jean-Marc Martinez\n\n`pyDOE` was converted to Python by the following individual:\n\n- Copyright (c) 2014, Abraham D. Lee\n\nThe following individuals forked `pyDOE` and worked on `pyDOE2`:\n\n- Copyright (C) 2018, Rickard Sj\u00f6gren and Daniel Svensson\n\n`pyDOE3` is a fork of the [`pyDOE2`](https://github.com/clicumu/pyDOE2). \nIt came to life to solve bugs and issues that remained unsolved in the\n`pyDOE2` package.\n\nLicense\n-------\n\nThis package is provided under the *BSD License* (3-clause)\n\nReferences\n----------\n\n- [Factorial designs](http://en.wikipedia.org/wiki/Factorial_experiment)\n- [Plackett-Burman designs](http://en.wikipedia.org/wiki/Plackett-Burman_design)\n- [Box-Behnken designs](http://en.wikipedia.org/wiki/Box-Behnken_design)\n- [Central composite designs](http://en.wikipedia.org/wiki/Central_composite_design)\n- [Doehlert Design](https://academic.oup.com/jrsssc/article/19/3/231/6882590)\n- [Latin-Hypercube designs](http://en.wikipedia.org/wiki/Latin_hypercube_sampling)\n- [Taguchi designs](http://en.wikipedia.org/wiki/Taguchi_methods)\n- [Generalized Subset Designs](https://doi.org/10.1021/acs.analchem.7b00506)\n- [Optimal experimental design](https://en.wikipedia.org/wiki/Optimal_experimental_design)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Design of experiments for Python",
    "version": "1.3.0",
    "project_urls": {
        "source": "https://github.com/relf/pyDOE3"
    },
    "split_keywords": [
        "doe",
        " design of experiments",
        " experimental design",
        " optimization",
        " python",
        " statistics"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e0b29cc538a5d8a3b1f67969e513256261b800fc0db8629a6f71a1c865b73f33",
                "md5": "40d06ac39fc5cca147674117b1f95791",
                "sha256": "2a4b74ffaa086ff495f484494d7864ee65fcbaefd9f203a166de4ac3c670b67f"
            },
            "downloads": -1,
            "filename": "pydoe3-1.3.0-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "40d06ac39fc5cca147674117b1f95791",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 51192,
            "upload_time": "2025-09-02T08:36:03",
            "upload_time_iso_8601": "2025-09-02T08:36:03.820847Z",
            "url": "https://files.pythonhosted.org/packages/e0/b2/9cc538a5d8a3b1f67969e513256261b800fc0db8629a6f71a1c865b73f33/pydoe3-1.3.0-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9e1f9f33b0e24ba0b7ee706749e10797138899d79f234c1ff1147e1a5b45e065",
                "md5": "5643cc860fb95adf0e5b3efa7c608a82",
                "sha256": "46a821c5cec3d1af45977e55153b31f85374171d1006bc208ccc00da9e1c88a4"
            },
            "downloads": -1,
            "filename": "pydoe3-1.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5643cc860fb95adf0e5b3efa7c608a82",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 130065,
            "upload_time": "2025-09-02T08:36:05",
            "upload_time_iso_8601": "2025-09-02T08:36:05.441161Z",
            "url": "https://files.pythonhosted.org/packages/9e/1f/9f33b0e24ba0b7ee706749e10797138899d79f234c1ff1147e1a5b45e065/pydoe3-1.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-02 08:36:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "relf",
    "github_project": "pyDOE3",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "ruff",
            "specs": []
        },
        {
            "name": "pytest",
            "specs": []
        }
    ],
    "lcname": "pydoe3"
}
        
Elapsed time: 4.62140s