pyDOE3: An experimental design package for python
=================================================
[![Tests](https://github.com/relf/pyDOE3/actions/workflows/tests.yml/badge.svg)](https://github.com/relf/pyDOE3/actions/workflows/tests.yml)
[![Documentation](https://readthedocs.org/projects/pydoe3/badge/?version=latest)](https://pydoe3.readthedocs.io/en/latest/?badge=latest)
`pyDOE3` is a fork of the [`pyDOE2`](https://github.com/clicumu/pyDOE2) package
that is designed to help the scientist, engineer, statistician, etc., to
construct appropriate experimental designs.
This fork came to life to solve bugs and issues that remained unsolved in the
original package.
Capabilities
------------
The package currently includes functions for creating designs for any
number of factors:
- Factorial Designs
- General Full-Factorial (``fullfact``)
- 2-level Full-Factorial (``ff2n``)
- 2-level Fractional Factorial (``fracfact``)
- Plackett-Burman (``pbdesign``)
- Generalized Subset Designs (``gsd``)
- Response-Surface Designs
- Box-Behnken (``bbdesign``)
- Central-Composite (``ccdesign``)
- Randomized Designs
- Latin-Hypercube (``lhs``)
See [Documentation](https://pydoe3.readthedocs.io).
Requirements
------------
- NumPy
- SciPy
Installation
------------
```bash
pip install pyDOE3
```
Credits
-------
`pyDOE` original code was originally converted from code by the following
individuals for use with Scilab:
- Copyright (C) 2012 - 2013 - Michael Baudin
- Copyright (C) 2012 - Maria Christopoulou
- Copyright (C) 2010 - 2011 - INRIA - Michael Baudin
- Copyright (C) 2009 - Yann Collette
- Copyright (C) 2009 - CEA - Jean-Marc Martinez
- Website: forge.scilab.org/index.php/p/scidoe/sourcetree/master/macros
`pyDOE` was converted to Python by the following individual:
- Copyright (c) 2014, Abraham D. Lee & timsimst
The following individuals forked and worked on `pyDOE2`:
- Copyright (C) 2018 - Rickard Sjögren and Daniel Svensson
License
-------
This package is provided under the *BSD License* (3-clause)
References
----------
- [Factorial designs](http://en.wikipedia.org/wiki/Factorial_experiment)
- [Plackett-Burman designs](http://en.wikipedia.org/wiki/Plackett-Burman_design)
- [Box-Behnken designs](http://en.wikipedia.org/wiki/Box-Behnken_design)
- [Central composite designs](http://en.wikipedia.org/wiki/Central_composite_design)
- [Latin-Hypercube designs](http://en.wikipedia.org/wiki/Latin_hypercube_sampling)
- Surowiec, Izabella, Ludvig Vikström, Gustaf Hector, Erik Johansson,
Conny Vikström, and Johan Trygg. “Generalized Subset Designs in Analytical
Chemistry.” Analytical Chemistry 89, no. 12 (June 20, 2017): 6491–97.
<https://doi.org/10.1021/acs.analchem.7b00506>.
Raw data
{
"_id": null,
"home_page": null,
"name": "pyDOE3",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "DOE, design of experiments, experimental design, optimization, python, statistics",
"author": null,
"author_email": "R\u00e9mi Lafage <remi.lafage@onera.fr>",
"download_url": "https://files.pythonhosted.org/packages/83/50/6e0bfbc13d4b4a937a9a7b500a397908121647363f4c99d95b8125dc506e/pydoe3-1.0.2.tar.gz",
"platform": null,
"description": "pyDOE3: An experimental design package for python\n=================================================\n\n[![Tests](https://github.com/relf/pyDOE3/actions/workflows/tests.yml/badge.svg)](https://github.com/relf/pyDOE3/actions/workflows/tests.yml)\n[![Documentation](https://readthedocs.org/projects/pydoe3/badge/?version=latest)](https://pydoe3.readthedocs.io/en/latest/?badge=latest)\n\n`pyDOE3` is a fork of the [`pyDOE2`](https://github.com/clicumu/pyDOE2) package\nthat is designed to help the scientist, engineer, statistician, etc., to\nconstruct appropriate experimental designs.\n\nThis fork came to life to solve bugs and issues that remained unsolved in the\noriginal package.\n\nCapabilities\n------------\n\nThe package currently includes functions for creating designs for any\nnumber of factors:\n\n- Factorial Designs\n - General Full-Factorial (``fullfact``)\n - 2-level Full-Factorial (``ff2n``)\n - 2-level Fractional Factorial (``fracfact``)\n - Plackett-Burman (``pbdesign``)\n - Generalized Subset Designs (``gsd``)\n- Response-Surface Designs\n - Box-Behnken (``bbdesign``)\n - Central-Composite (``ccdesign``)\n- Randomized Designs\n - Latin-Hypercube (``lhs``)\n \nSee [Documentation](https://pydoe3.readthedocs.io).\n\nRequirements\n------------\n\n- NumPy\n- SciPy\n\nInstallation\n------------\n\n```bash\npip install pyDOE3\n```\n\nCredits\n-------\n\n`pyDOE` original code was originally converted from code by the following\nindividuals for use with Scilab:\n\n- Copyright (C) 2012 - 2013 - Michael Baudin\n- Copyright (C) 2012 - Maria Christopoulou\n- Copyright (C) 2010 - 2011 - INRIA - Michael Baudin\n- Copyright (C) 2009 - Yann Collette\n- Copyright (C) 2009 - CEA - Jean-Marc Martinez\n\n- Website: forge.scilab.org/index.php/p/scidoe/sourcetree/master/macros\n\n`pyDOE` was converted to Python by the following individual:\n\n- Copyright (c) 2014, Abraham D. Lee & timsimst\n\nThe following individuals forked and worked on `pyDOE2`:\n\n- Copyright (C) 2018 - Rickard Sj\u00f6gren and Daniel Svensson\n\nLicense\n-------\n\nThis package is provided under the *BSD License* (3-clause)\n\nReferences\n----------\n\n- [Factorial designs](http://en.wikipedia.org/wiki/Factorial_experiment)\n- [Plackett-Burman designs](http://en.wikipedia.org/wiki/Plackett-Burman_design)\n- [Box-Behnken designs](http://en.wikipedia.org/wiki/Box-Behnken_design)\n- [Central composite designs](http://en.wikipedia.org/wiki/Central_composite_design)\n- [Latin-Hypercube designs](http://en.wikipedia.org/wiki/Latin_hypercube_sampling)\n- Surowiec, Izabella, Ludvig Vikstr\u00f6m, Gustaf Hector, Erik Johansson,\nConny Vikstr\u00f6m, and Johan Trygg. \u201cGeneralized Subset Designs in Analytical\nChemistry.\u201d Analytical Chemistry 89, no. 12 (June 20, 2017): 6491\u201397.\n<https://doi.org/10.1021/acs.analchem.7b00506>.\n",
"bugtrack_url": null,
"license": null,
"summary": "Design of experiments for Python",
"version": "1.0.2",
"project_urls": {
"source": "https://github.com/relf/pyDOE3"
},
"split_keywords": [
"doe",
" design of experiments",
" experimental design",
" optimization",
" python",
" statistics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ce601f346644f55c8171162ceb9ce5671bc7d147843fec66902548b0ff9492ff",
"md5": "b2e9a11fed4519345e9f902f2b5a98b9",
"sha256": "09925e3d445f40aa720ed81bb8c816d77aaae80e2521bb285ed07244e17e54e9"
},
"downloads": -1,
"filename": "pydoe3-1.0.2-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "b2e9a11fed4519345e9f902f2b5a98b9",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 25148,
"upload_time": "2024-04-11T07:24:31",
"upload_time_iso_8601": "2024-04-11T07:24:31.622464Z",
"url": "https://files.pythonhosted.org/packages/ce/60/1f346644f55c8171162ceb9ce5671bc7d147843fec66902548b0ff9492ff/pydoe3-1.0.2-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "83506e0bfbc13d4b4a937a9a7b500a397908121647363f4c99d95b8125dc506e",
"md5": "a612265a8286162405c5e4c3548ba7f6",
"sha256": "69ffd88aa81ef9df6fdf0cc7b64748ee7eb14895939c50dfd22a0e0e6a718df7"
},
"downloads": -1,
"filename": "pydoe3-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "a612265a8286162405c5e4c3548ba7f6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 103322,
"upload_time": "2024-04-11T07:24:33",
"upload_time_iso_8601": "2024-04-11T07:24:33.251134Z",
"url": "https://files.pythonhosted.org/packages/83/50/6e0bfbc13d4b4a937a9a7b500a397908121647363f4c99d95b8125dc506e/pydoe3-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-11 07:24:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "relf",
"github_project": "pyDOE3",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "numpy",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "black",
"specs": []
},
{
"name": "pytest",
"specs": []
}
],
"lcname": "pydoe3"
}