pyEnGNet


NamepyEnGNet JSON
Version 0.0.1.4 PyPI version JSON
download
home_page
SummarypyEnGNet: optimized reconstruction of gene co-expression networks using multi-GPU
upload_time2023-01-21 19:10:03
maintainer
docs_urlNone
authorAurelio Lopez-Fernandez
requires_python
license
keywords python multigpu bioinformatics vgene networks
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            pyEnGNet: optimized reconstruction of gene co-expression networks using multi-GPU

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "pyEnGNet",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,multiGPU,bioinformatics,vgene networks",
    "author": "Aurelio Lopez-Fernandez",
    "author_email": "alopfer1@upo.es",
    "download_url": "https://files.pythonhosted.org/packages/fd/1c/c4c27b194825f6c31b50520514d147a30a52f440ef1dc9da112a242bcb66/pyEnGNet-0.0.1.4.tar.gz",
    "platform": null,
    "description": "pyEnGNet: optimized reconstruction of gene co-expression networks using multi-GPU\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "pyEnGNet: optimized reconstruction of gene co-expression networks using multi-GPU",
    "version": "0.0.1.4",
    "split_keywords": [
        "python",
        "multigpu",
        "bioinformatics",
        "vgene networks"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ec4e8693e6e3b567a790c0ec707f420a2594473d8a0758e579e012667e227ddd",
                "md5": "e41d7c474a483f379bb134fb1157264d",
                "sha256": "44c3e9875d0bfe247c97b328f1c4f0b0c20c6ba3ca7e5309926fb6d3bcae1443"
            },
            "downloads": -1,
            "filename": "pyEnGNet-0.0.1.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e41d7c474a483f379bb134fb1157264d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 13577,
            "upload_time": "2023-01-21T19:10:01",
            "upload_time_iso_8601": "2023-01-21T19:10:01.800954Z",
            "url": "https://files.pythonhosted.org/packages/ec/4e/8693e6e3b567a790c0ec707f420a2594473d8a0758e579e012667e227ddd/pyEnGNet-0.0.1.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fd1cc4c27b194825f6c31b50520514d147a30a52f440ef1dc9da112a242bcb66",
                "md5": "bc958f3305a19da73b3b04075c9a6306",
                "sha256": "37d4ebafb1fdafabddd8d26ef948d27c88467a3647411083bb3c44bc73e7dbe0"
            },
            "downloads": -1,
            "filename": "pyEnGNet-0.0.1.4.tar.gz",
            "has_sig": false,
            "md5_digest": "bc958f3305a19da73b3b04075c9a6306",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 18778,
            "upload_time": "2023-01-21T19:10:03",
            "upload_time_iso_8601": "2023-01-21T19:10:03.836710Z",
            "url": "https://files.pythonhosted.org/packages/fd/1c/c4c27b194825f6c31b50520514d147a30a52f440ef1dc9da112a242bcb66/pyEnGNet-0.0.1.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-21 19:10:03",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "pyengnet"
}
        
Elapsed time: 0.07305s