pyannote-onnx


Namepyannote-onnx JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/pengzhendong/pyannote-onnx
SummaryPyannote ONNX
upload_time2024-09-11 09:41:58
maintainerNone
docs_urlNone
authorZhendong Peng
requires_pythonNone
licenseNone
keywords
VCS
bugtrack_url
requirements click librosa matplotlib modelscope numpy onnxruntime
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Speaker Diarization

> [pyannote-audio](https://github.com/pyannote/pyannote-audio) is an open-source toolkit written in Python for speaker diarization.

`pyannote-onnx` is used to convert the [pretrained model](https://huggingface.co/pyannote/segmentation-3.0) defined in PyTorch into the ONNX format and then run it with [ONNX Runtime](https://github.com/microsoft/onnxruntime) (in C++ or Python).

> Only Python 3.8+ is supported.

## Usage

1. Download the [pretrained model](https://huggingface.co/pyannote/segmentation-3.0/resolve/main/pytorch_model.bin) from Hugging Face [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0/tree/main).
2. Export the pretrained model to ONNX model.
3. Run the ONNX model with ONNX Runtime in C++ or Python.

```bash
$ pip install torch onnx https://github.com/pyannote/pyannote-audio/archive/refs/heads/develop.zip
$ python export_onnx.py pytorch_model.bin segmentation-3.0.onnx

$ pip install pyannote-onnx
$ diarize data/test_16k.wav --plot
```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pengzhendong/pyannote-onnx",
    "name": "pyannote-onnx",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Zhendong Peng",
    "author_email": "pzd17@tsinghua.org.cn",
    "download_url": "https://files.pythonhosted.org/packages/09/19/fa432b95cc6fa89be8ad44d0a8d7230d374892404e44882b06534a0d07f4/pyannote-onnx-0.1.1.tar.gz",
    "platform": null,
    "description": "# Speaker Diarization\n\n> [pyannote-audio](https://github.com/pyannote/pyannote-audio) is an open-source toolkit written in Python for speaker diarization.\n\n`pyannote-onnx` is used to convert the [pretrained model](https://huggingface.co/pyannote/segmentation-3.0) defined in PyTorch into the ONNX format and then run it with [ONNX Runtime](https://github.com/microsoft/onnxruntime) (in C++ or Python).\n\n> Only Python 3.8+ is supported.\n\n## Usage\n\n1. Download the [pretrained model](https://huggingface.co/pyannote/segmentation-3.0/resolve/main/pytorch_model.bin) from Hugging Face [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0/tree/main).\n2. Export the pretrained model to ONNX model.\n3. Run the ONNX model with ONNX Runtime in C++ or Python.\n\n```bash\n$ pip install torch onnx https://github.com/pyannote/pyannote-audio/archive/refs/heads/develop.zip\n$ python export_onnx.py pytorch_model.bin segmentation-3.0.onnx\n\n$ pip install pyannote-onnx\n$ diarize data/test_16k.wav --plot\n```\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Pyannote ONNX",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/pengzhendong/pyannote-onnx"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0919fa432b95cc6fa89be8ad44d0a8d7230d374892404e44882b06534a0d07f4",
                "md5": "b05fce90df63df1a4e0542ff0372ae74",
                "sha256": "615d613e4d539eae3f6689950599be69d66bd6eefa812321b0f7c09606b310ca"
            },
            "downloads": -1,
            "filename": "pyannote-onnx-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "b05fce90df63df1a4e0542ff0372ae74",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 8694,
            "upload_time": "2024-09-11T09:41:58",
            "upload_time_iso_8601": "2024-09-11T09:41:58.874454Z",
            "url": "https://files.pythonhosted.org/packages/09/19/fa432b95cc6fa89be8ad44d0a8d7230d374892404e44882b06534a0d07f4/pyannote-onnx-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-11 09:41:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pengzhendong",
    "github_project": "pyannote-onnx",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "click",
            "specs": []
        },
        {
            "name": "librosa",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "modelscope",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "onnxruntime",
            "specs": []
        }
    ],
    "lcname": "pyannote-onnx"
}
        
Elapsed time: 0.27786s