pybettor


Namepybettor JSON
Version 1.1.3 PyPI version JSON
download
home_pagehttps://github.com/ian-shepherd/pybettor
Summaryautomates simple bettor tasks
upload_time2023-06-26 19:16:16
maintainer
docs_urlNone
authorIan Shepherd, Jason Lee, Jared Lee
requires_python
license
keywords
VCS
bugtrack_url
requirements numpy scipy matplotlib
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI version fury.io](https://badge.fury.io/py/pybettor.svg)](https://pypi.python.org/pypi/pybettor/) [![Lifecycle:
experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://www.tidyverse.org/lifecycle/#experimental) [![Twitter
Follow](https://img.shields.io/twitter/follow/theFirmAISports?style=social)](https://twitter.com/theFirmAISports)


## Tools for Sports Betting

This package contains tools and functions to help sports bettors make more money\!

## Installation

You can install pybettor from [PyPi](https://pypi.org/project/pybettor/) with:

``` python
pip install "pybettor"
```

## Running Tests
```python
pip install pytest
pytest
```

## Running Linting
```python
pip install flake8
flake8 . --count --max-complexity=15 --max-line-length=128 --statistics
```

## Examples

#### Implied Probability

Implied probabilities, or break-even win percentage, can easily be found with this function. Here is an example with given odds of -300 (US Odds), 2.5 (Decimal Odds), 4.9 (Decimal Odds), 7/1 (Fractional Odds).

``` python
implied_prob(-300, category="us")
```

    [0.75]

``` python
implied_prob(2.5, category="dec")
```

    [0.4]

```python
implied_prob(7/1, category="frac")
```

    [0.125]

#### Odds from Probabilities

Let’s say you believe a bet has a 75% chance to cover, what would the price be? Using the implied odds function can give you the price based on your probability.

``` python
implied_odds(0.75, category="us")
```

    [-300]

``` python
implied_odds(0.75, category="dec")
```

    [1.33]

``` python
implied_odds(0.75, category="frac")
```

    ['1/3']

``` python
implied_odds(0.75, category="all")
```

        American  Decimal Fraction  Implied Probability
    0    -300.0     1.33   33/100                 0.75

#### Converting Odds

Let’s say you want to convert the American Odds you see on the screen (-175) to another type.

``` python
convert_odds(-175)
```

       American  Decimal Fraction  Implied Probability
    0      -175     1.57      4/7             0.636364

## Special Thanks

  - To the entire [A.I. Sports](https://aisportsfirm.com/home/our-team/) team\!


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ian-shepherd/pybettor",
    "name": "pybettor",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Ian Shepherd, Jason Lee, Jared Lee",
    "author_email": "ian.shepherd123@gmail.com, jason@aisportsfirm.com, 13jaredlee@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/2d/df/8a9ae932e18936f3166a149552b3f605344d9a411bdd88018eac725d448e/pybettor-1.1.3.tar.gz",
    "platform": null,
    "description": "[![PyPI version fury.io](https://badge.fury.io/py/pybettor.svg)](https://pypi.python.org/pypi/pybettor/) [![Lifecycle:\nexperimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://www.tidyverse.org/lifecycle/#experimental) [![Twitter\nFollow](https://img.shields.io/twitter/follow/theFirmAISports?style=social)](https://twitter.com/theFirmAISports)\n\n\n## Tools for Sports Betting\n\nThis package contains tools and functions to help sports bettors make more money\\!\n\n## Installation\n\nYou can install pybettor from [PyPi](https://pypi.org/project/pybettor/) with:\n\n``` python\npip install \"pybettor\"\n```\n\n## Running Tests\n```python\npip install pytest\npytest\n```\n\n## Running Linting\n```python\npip install flake8\nflake8 . --count --max-complexity=15 --max-line-length=128 --statistics\n```\n\n## Examples\n\n#### Implied Probability\n\nImplied probabilities, or break-even win percentage, can easily be found with this function. Here is an example with given odds of -300 (US Odds), 2.5 (Decimal Odds), 4.9 (Decimal Odds), 7/1 (Fractional Odds).\n\n``` python\nimplied_prob(-300, category=\"us\")\n```\n\n    [0.75]\n\n``` python\nimplied_prob(2.5, category=\"dec\")\n```\n\n    [0.4]\n\n```python\nimplied_prob(7/1, category=\"frac\")\n```\n\n    [0.125]\n\n#### Odds from Probabilities\n\nLet\u00e2\u20ac\u2122s say you believe a bet has a 75% chance to cover, what would the price be? Using the implied odds function can give you the price based on your probability.\n\n``` python\nimplied_odds(0.75, category=\"us\")\n```\n\n    [-300]\n\n``` python\nimplied_odds(0.75, category=\"dec\")\n```\n\n    [1.33]\n\n``` python\nimplied_odds(0.75, category=\"frac\")\n```\n\n    ['1/3']\n\n``` python\nimplied_odds(0.75, category=\"all\")\n```\n\n        American  Decimal Fraction  Implied Probability\n    0    -300.0     1.33   33/100                 0.75\n\n#### Converting Odds\n\nLet\u00e2\u20ac\u2122s say you want to convert the American Odds you see on the screen (-175) to another type.\n\n``` python\nconvert_odds(-175)\n```\n\n       American  Decimal Fraction  Implied Probability\n    0      -175     1.57      4/7             0.636364\n\n## Special Thanks\n\n  - To the entire [A.I. Sports](https://aisportsfirm.com/home/our-team/) team\\!\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "automates simple bettor tasks",
    "version": "1.1.3",
    "project_urls": {
        "Homepage": "https://github.com/ian-shepherd/pybettor"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4098172c814e362e8e73381a9079b195b4258f522991249462f319050853c800",
                "md5": "8298eef5410b3bf4c12ba0427342390c",
                "sha256": "30dbdd1b6882e1dd659d7a0400b1fe63ca4a011a78fee551b85c3597e578b2fd"
            },
            "downloads": -1,
            "filename": "pybettor-1.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8298eef5410b3bf4c12ba0427342390c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 21249,
            "upload_time": "2023-06-26T19:16:02",
            "upload_time_iso_8601": "2023-06-26T19:16:02.883895Z",
            "url": "https://files.pythonhosted.org/packages/40/98/172c814e362e8e73381a9079b195b4258f522991249462f319050853c800/pybettor-1.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2ddf8a9ae932e18936f3166a149552b3f605344d9a411bdd88018eac725d448e",
                "md5": "166c608cba6e4309eb3e3566cc9a9e01",
                "sha256": "be97995e9c209474c2e02ec1a288aa2c5052614e7bcb052f050ec00beb344573"
            },
            "downloads": -1,
            "filename": "pybettor-1.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "166c608cba6e4309eb3e3566cc9a9e01",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 15525570,
            "upload_time": "2023-06-26T19:16:16",
            "upload_time_iso_8601": "2023-06-26T19:16:16.408337Z",
            "url": "https://files.pythonhosted.org/packages/2d/df/8a9ae932e18936f3166a149552b3f605344d9a411bdd88018eac725d448e/pybettor-1.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-26 19:16:16",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ian-shepherd",
    "github_project": "pybettor",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        }
    ],
    "lcname": "pybettor"
}
        
Elapsed time: 0.07714s