About
---
pyHRMc is designed for HRMC simulations using experimental electron pair distribution functions as a primary constraint. This packagerelies heavily and uses code from [pymatgen](https://pymatgen.org/), which is released under the MIT license.
Full documentation can be found at https://ehrhardtkm.github.io/pyHRMC/
Installation
---
Prior to installing pyHRMC, LAMMPS must be installed and built in serial. Additionally, if using a FLARE potential, LAMMPS must be compiled with FLARE. Instructions for these steps can be found at these links:
- https://docs.lammps.org/Install.html
- https://mir-group.github.io/flare/installation/lammps.html
To install pyHRMC, first create a virtual environment:
```
conda create -n pyHRMC pip python==3.11
conda activate pyHRMC
```
Installation can then be performed in the new environment. pyHRMC is currently available on PyPi for `pip install`:
```
pip install pyhrmc
```
If users desire to modify the code from their own needs, we recommend the following steps instead:
```
conda create -n pyHRMC pip python==3.11
conda activate pyHRMC
git clone https://github.com/ehrhardtkm/pyHRMC.git
cd pyHRMC
pip install -e .
```
Raw data
{
"_id": null,
"home_page": "https://github.com/ehrhardtkm/pyHRMC",
"name": "pyhrmc-dev",
"maintainer": null,
"docs_url": null,
"requires_python": "==3.11",
"maintainer_email": null,
"keywords": "Hybrid Reverse Monte Carlo, HRMC, Amorphous materials",
"author": "Karen M. Ehrhardt",
"author_email": "\"Karen M. Ehrhardt\" <kme@email.unc.edu>",
"download_url": "https://files.pythonhosted.org/packages/68/70/48903e7f932077aed437eb02d3de402c505cb0f871be27d0d78e1208a21a/pyhrmc_dev-0.0.0.tar.gz",
"platform": null,
"description": "About \n--- \npyHRMc is designed for HRMC simulations using experimental electron pair distribution functions as a primary constraint. This packagerelies heavily and uses code from [pymatgen](https://pymatgen.org/), which is released under the MIT license.\n\nFull documentation can be found at https://ehrhardtkm.github.io/pyHRMC/\n\nInstallation\n --- \nPrior to installing pyHRMC, LAMMPS must be installed and built in serial. Additionally, if using a FLARE potential, LAMMPS must be compiled with FLARE. Instructions for these steps can be found at these links:\n\n- https://docs.lammps.org/Install.html\n- https://mir-group.github.io/flare/installation/lammps.html\n\nTo install pyHRMC, first create a virtual environment:\n```\nconda create -n pyHRMC pip python==3.11\nconda activate pyHRMC\n```\n\nInstallation can then be performed in the new environment. pyHRMC is currently available on PyPi for `pip install`: \n```\npip install pyhrmc\n```\n\nIf users desire to modify the code from their own needs, we recommend the following steps instead:\n``` \nconda create -n pyHRMC pip python==3.11 \nconda activate pyHRMC\ngit clone https://github.com/ehrhardtkm/pyHRMC.git\ncd pyHRMC\npip install -e .\n```\n\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "A Python implementation of Hybrid Reverse Monte Carlo for electron scattering of thin films",
"version": "0.0.0",
"project_urls": {
"Homepage": "https://github.com/ehrhardtkm/pyHRMC",
"documentation": "https://ehrhardtkm.github.io/pyHRMC/",
"repository": "https://github.com/ehrhardtkm/pyHRMC"
},
"split_keywords": [
"hybrid reverse monte carlo",
" hrmc",
" amorphous materials"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3bec8e412f23d0c09f61bafe1b76ce76af64507b9401630e42ed7ef4d71fd23b",
"md5": "b7fba105bba3cfcb0457897f5c09446a",
"sha256": "d160d54341b80b5106c43c8b0a10ba606f8e009b1f5fb0748f2d31badbed82d1"
},
"downloads": -1,
"filename": "pyhrmc_dev-0.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b7fba105bba3cfcb0457897f5c09446a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "==3.11",
"size": 44215,
"upload_time": "2024-10-07T18:44:21",
"upload_time_iso_8601": "2024-10-07T18:44:21.041119Z",
"url": "https://files.pythonhosted.org/packages/3b/ec/8e412f23d0c09f61bafe1b76ce76af64507b9401630e42ed7ef4d71fd23b/pyhrmc_dev-0.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "687048903e7f932077aed437eb02d3de402c505cb0f871be27d0d78e1208a21a",
"md5": "932452d88315b77eacb18d69fcc5a2ff",
"sha256": "694f626da5768bfb0da61fcfd8ecb00ff51444a56d485fdc4e734184abcda588"
},
"downloads": -1,
"filename": "pyhrmc_dev-0.0.0.tar.gz",
"has_sig": false,
"md5_digest": "932452d88315b77eacb18d69fcc5a2ff",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "==3.11",
"size": 35906,
"upload_time": "2024-10-07T18:44:22",
"upload_time_iso_8601": "2024-10-07T18:44:22.989583Z",
"url": "https://files.pythonhosted.org/packages/68/70/48903e7f932077aed437eb02d3de402c505cb0f871be27d0d78e1208a21a/pyhrmc_dev-0.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-07 18:44:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ehrhardtkm",
"github_project": "pyHRMC",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "ase",
"specs": [
[
"==",
"3.22.1"
]
]
},
{
"name": "lammps",
"specs": [
[
"==",
"2024.8.29.1.0"
]
]
},
{
"name": "matminer",
"specs": [
[
"==",
"0.8.0"
]
]
},
{
"name": "matplotlib",
"specs": [
[
"==",
"3.9.2"
]
]
},
{
"name": "numpy",
"specs": [
[
"==",
"2.1.2"
]
]
},
{
"name": "pandas",
"specs": [
[
"==",
"2.2.3"
]
]
},
{
"name": "pymatgen",
"specs": [
[
"==",
"2024.2.20"
]
]
},
{
"name": "pymatgen_analysis_diffusion",
"specs": [
[
"==",
"2023.8.15"
]
]
},
{
"name": "scikit_learn",
"specs": [
[
"==",
"1.2.1"
]
]
},
{
"name": "scipy",
"specs": [
[
"==",
"1.14.1"
]
]
},
{
"name": "setuptools",
"specs": [
[
"==",
"73.0.1"
]
]
}
],
"lcname": "pyhrmc-dev"
}