pyhrmc-dev


Namepyhrmc-dev JSON
Version 0.0.0 PyPI version JSON
download
home_pagehttps://github.com/ehrhardtkm/pyHRMC
SummaryA Python implementation of Hybrid Reverse Monte Carlo for electron scattering of thin films
upload_time2024-10-07 18:44:22
maintainerNone
docs_urlNone
authorKaren M. Ehrhardt
requires_python==3.11
licenseBSD-3-Clause
keywords hybrid reverse monte carlo hrmc amorphous materials
VCS
bugtrack_url
requirements ase lammps matminer matplotlib numpy pandas pymatgen pymatgen_analysis_diffusion scikit_learn scipy setuptools
Travis-CI No Travis.
coveralls test coverage No coveralls.
            About 
--- 
pyHRMc is designed for HRMC simulations using experimental electron pair distribution functions as a primary constraint. This packagerelies heavily and uses code from [pymatgen](https://pymatgen.org/), which is released under the MIT license.

Full documentation can be found at https://ehrhardtkm.github.io/pyHRMC/

Installation
 --- 
Prior to installing pyHRMC, LAMMPS must be installed and built in serial. Additionally, if using a FLARE potential, LAMMPS must be compiled with FLARE. Instructions for these steps can be found at these links:

- https://docs.lammps.org/Install.html
- https://mir-group.github.io/flare/installation/lammps.html

To install pyHRMC, first create a virtual environment:
```
conda create -n pyHRMC pip python==3.11
conda activate pyHRMC
```

Installation can then be performed in the new environment. pyHRMC is currently available on PyPi for `pip install`: 
```
pip install pyhrmc
```

If users desire to modify the code from their own needs, we recommend the following steps instead:
``` 
conda create -n pyHRMC pip python==3.11 
conda activate pyHRMC
git clone https://github.com/ehrhardtkm/pyHRMC.git
cd pyHRMC
pip install -e .
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ehrhardtkm/pyHRMC",
    "name": "pyhrmc-dev",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "==3.11",
    "maintainer_email": null,
    "keywords": "Hybrid Reverse Monte Carlo, HRMC, Amorphous materials",
    "author": "Karen M. Ehrhardt",
    "author_email": "\"Karen M. Ehrhardt\" <kme@email.unc.edu>",
    "download_url": "https://files.pythonhosted.org/packages/68/70/48903e7f932077aed437eb02d3de402c505cb0f871be27d0d78e1208a21a/pyhrmc_dev-0.0.0.tar.gz",
    "platform": null,
    "description": "About \n--- \npyHRMc is designed for HRMC simulations using experimental electron pair distribution functions as a primary constraint. This packagerelies heavily and uses code from [pymatgen](https://pymatgen.org/), which is released under the MIT license.\n\nFull documentation can be found at https://ehrhardtkm.github.io/pyHRMC/\n\nInstallation\n --- \nPrior to installing pyHRMC, LAMMPS must be installed and built in serial. Additionally, if using a FLARE potential, LAMMPS must be compiled with FLARE. Instructions for these steps can be found at these links:\n\n- https://docs.lammps.org/Install.html\n- https://mir-group.github.io/flare/installation/lammps.html\n\nTo install pyHRMC, first create a virtual environment:\n```\nconda create -n pyHRMC pip python==3.11\nconda activate pyHRMC\n```\n\nInstallation can then be performed in the new environment. pyHRMC is currently available on PyPi for `pip install`: \n```\npip install pyhrmc\n```\n\nIf users desire to modify the code from their own needs, we recommend the following steps instead:\n``` \nconda create -n pyHRMC pip python==3.11 \nconda activate pyHRMC\ngit clone https://github.com/ehrhardtkm/pyHRMC.git\ncd pyHRMC\npip install -e .\n```\n\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "A Python implementation of Hybrid Reverse Monte Carlo for electron scattering of thin films",
    "version": "0.0.0",
    "project_urls": {
        "Homepage": "https://github.com/ehrhardtkm/pyHRMC",
        "documentation": "https://ehrhardtkm.github.io/pyHRMC/",
        "repository": "https://github.com/ehrhardtkm/pyHRMC"
    },
    "split_keywords": [
        "hybrid reverse monte carlo",
        " hrmc",
        " amorphous materials"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3bec8e412f23d0c09f61bafe1b76ce76af64507b9401630e42ed7ef4d71fd23b",
                "md5": "b7fba105bba3cfcb0457897f5c09446a",
                "sha256": "d160d54341b80b5106c43c8b0a10ba606f8e009b1f5fb0748f2d31badbed82d1"
            },
            "downloads": -1,
            "filename": "pyhrmc_dev-0.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b7fba105bba3cfcb0457897f5c09446a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "==3.11",
            "size": 44215,
            "upload_time": "2024-10-07T18:44:21",
            "upload_time_iso_8601": "2024-10-07T18:44:21.041119Z",
            "url": "https://files.pythonhosted.org/packages/3b/ec/8e412f23d0c09f61bafe1b76ce76af64507b9401630e42ed7ef4d71fd23b/pyhrmc_dev-0.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "687048903e7f932077aed437eb02d3de402c505cb0f871be27d0d78e1208a21a",
                "md5": "932452d88315b77eacb18d69fcc5a2ff",
                "sha256": "694f626da5768bfb0da61fcfd8ecb00ff51444a56d485fdc4e734184abcda588"
            },
            "downloads": -1,
            "filename": "pyhrmc_dev-0.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "932452d88315b77eacb18d69fcc5a2ff",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "==3.11",
            "size": 35906,
            "upload_time": "2024-10-07T18:44:22",
            "upload_time_iso_8601": "2024-10-07T18:44:22.989583Z",
            "url": "https://files.pythonhosted.org/packages/68/70/48903e7f932077aed437eb02d3de402c505cb0f871be27d0d78e1208a21a/pyhrmc_dev-0.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-07 18:44:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ehrhardtkm",
    "github_project": "pyHRMC",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "ase",
            "specs": [
                [
                    "==",
                    "3.22.1"
                ]
            ]
        },
        {
            "name": "lammps",
            "specs": [
                [
                    "==",
                    "2024.8.29.1.0"
                ]
            ]
        },
        {
            "name": "matminer",
            "specs": [
                [
                    "==",
                    "0.8.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    "==",
                    "3.9.2"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "2.1.2"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "2.2.3"
                ]
            ]
        },
        {
            "name": "pymatgen",
            "specs": [
                [
                    "==",
                    "2024.2.20"
                ]
            ]
        },
        {
            "name": "pymatgen_analysis_diffusion",
            "specs": [
                [
                    "==",
                    "2023.8.15"
                ]
            ]
        },
        {
            "name": "scikit_learn",
            "specs": [
                [
                    "==",
                    "1.2.1"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.14.1"
                ]
            ]
        },
        {
            "name": "setuptools",
            "specs": [
                [
                    "==",
                    "73.0.1"
                ]
            ]
        }
    ],
    "lcname": "pyhrmc-dev"
}
        
Elapsed time: 5.03564s