# PyMAIA
<p align="center">
<img src="https://raw.githubusercontent.com/SimoneBendazzoli93/PyMAIA/main/images/MAI_A_logo.png" width="50%" alt='PyMAIA'>
</p>
[![Documentation Status](https://readthedocs.org/projects/pymaia/badge/?version=latest)](https://pymaia.readthedocs.io/en/latest/?badge=latest)
![Version](https://img.shields.io/badge/PyMAIA-v1.1-blue)
[![License](https://img.shields.io/badge/license-GPL%203.0-green.svg)](https://opensource.org/licenses/GPL-3.0)
![Python](https://img.shields.io/badge/python-3.8+-orange)
![CUDA](https://img.shields.io/badge/CUDA-10.1%2F10.2%2F11.0-green)
![GitHub Release Date - Published_At](https://img.shields.io/github/release-date/simonebendazzoli93/PyMAIA?logo=github)
![GitHub contributors](https://img.shields.io/github/contributors/simonebendazzoli93/PyMAIA?logo=github)
![GitHub top language](https://img.shields.io/github/languages/top/simonebendazzoli93/PyMAIA?logo=github)
![GitHub language count](https://img.shields.io/github/languages/count/simonebendazzoli93/PyMAIA?logo=github)
![GitHub Workflow Status (with event)](https://img.shields.io/github/actions/workflow/status/simonebendazzoli93/PyMAIA/publish_release.yaml?logo=github)
![GitHub all releases](https://img.shields.io/github/downloads/simonebendazzoli93/PyMAIA/total?logo=github)
![PyPI - Downloads](https://img.shields.io/pypi/dm/pymaia-learn?logo=pypi)
![GitHub](https://img.shields.io/github/license/simonebendazzoli93/PyMAIA?logo=github)
![PyPI - License](https://img.shields.io/pypi/l/pymaia-learn?logo=pypi)
![Conda](https://img.shields.io/conda/pn/MAIA-KTH/pymaia-learn?logo=anaconda)
![Conda](https://img.shields.io/conda/v/MAIA-KTH/pymaia-learn?logo=anaconda)
![GitHub repo size](https://img.shields.io/github/repo-size/simonebendazzoli93/PyMAIA?logo=github)
![GitHub release (with filter)](https://img.shields.io/github/v/release/simonebendazzoli93/PyMAIA?logo=github)
![PyPI](https://img.shields.io/pypi/v/pymaia-learn?logo=pypi)
## What is PyMAIA?
Hive is a Python package to support Deep Learning data preparation, pre-processing. training, result visualization and
model deployment across different frameworks ([nnUNet](https://github.com/MIC-DKFZ/nnUNet)
, [nnDetection](https://github.com/MIC-DKFZ/nnDetection), [MONAI](https://monai.io/) ).
## Local Environment Setup
To install the package, run the following commands:
```bash
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
or conda install cudatoolkit cuda-version=11
pip install nnunetv2/nndetection
pip install pymaia-learn
```
More information can be found in the [documentation](https://pymaia.readthedocs.io/en/latest/).
## Tutorials
- [nnUNet Tutorial](https://pymaia.readthedocs.io/en/latest/tutorials/nnUNet_tutorial.html)
- [nnDetection Tutorial](https://pymaia.readthedocs.io/en/latest/tutorials/nnDetection_tutorial.html)
## Docker and Singularity
PyMAIA can be run in a containerized environment using Docker or Singularity. To
create the PyMAIA image, you can use [HPPCM](https://github.com/NVIDIA/hpc-container-maker), a tool to create container
images for HPC applications from given recipes.
```bash
pip install hpccm
hpccm --recipe recipe.py --format singularity > PyMAIA.def
singularity build PyMAIA.sif PyMAIA.def
hpccm --recipe recipe.py --format docker > Dockerfile
docker build -t pymaia .
```
Raw data
{
"_id": null,
"home_page": "https://github.com/SimoneBendazzoli93/PyMAIA.git",
"name": "pymaia-learn",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "deep learning, image segmentation, medical image analysis, medical image segmentation, object detection",
"author": "Bendazzoli Simone",
"author_email": "simben@kth.se",
"download_url": "https://files.pythonhosted.org/packages/bb/d5/87a5ecf83915eefa20b8f82f66ae5d8e9eeed3a95ce7196e131674b29b42/pymaia_learn-1.2.1.tar.gz",
"platform": "OS Independent",
"description": "# PyMAIA\n\n<p align=\"center\">\n<img src=\"https://raw.githubusercontent.com/SimoneBendazzoli93/PyMAIA/main/images/MAI_A_logo.png\" width=\"50%\" alt='PyMAIA'>\n</p>\n\n[![Documentation Status](https://readthedocs.org/projects/pymaia/badge/?version=latest)](https://pymaia.readthedocs.io/en/latest/?badge=latest)\n![Version](https://img.shields.io/badge/PyMAIA-v1.1-blue)\n[![License](https://img.shields.io/badge/license-GPL%203.0-green.svg)](https://opensource.org/licenses/GPL-3.0)\n![Python](https://img.shields.io/badge/python-3.8+-orange)\n![CUDA](https://img.shields.io/badge/CUDA-10.1%2F10.2%2F11.0-green)\n\n![GitHub Release Date - Published_At](https://img.shields.io/github/release-date/simonebendazzoli93/PyMAIA?logo=github)\n![GitHub contributors](https://img.shields.io/github/contributors/simonebendazzoli93/PyMAIA?logo=github)\n![GitHub top language](https://img.shields.io/github/languages/top/simonebendazzoli93/PyMAIA?logo=github)\n![GitHub language count](https://img.shields.io/github/languages/count/simonebendazzoli93/PyMAIA?logo=github)\n![GitHub Workflow Status (with event)](https://img.shields.io/github/actions/workflow/status/simonebendazzoli93/PyMAIA/publish_release.yaml?logo=github)\n![GitHub all releases](https://img.shields.io/github/downloads/simonebendazzoli93/PyMAIA/total?logo=github)\n![PyPI - Downloads](https://img.shields.io/pypi/dm/pymaia-learn?logo=pypi)\n![GitHub](https://img.shields.io/github/license/simonebendazzoli93/PyMAIA?logo=github)\n![PyPI - License](https://img.shields.io/pypi/l/pymaia-learn?logo=pypi)\n\n![Conda](https://img.shields.io/conda/pn/MAIA-KTH/pymaia-learn?logo=anaconda)\n![Conda](https://img.shields.io/conda/v/MAIA-KTH/pymaia-learn?logo=anaconda)\n\n![GitHub repo size](https://img.shields.io/github/repo-size/simonebendazzoli93/PyMAIA?logo=github)\n![GitHub release (with filter)](https://img.shields.io/github/v/release/simonebendazzoli93/PyMAIA?logo=github)\n![PyPI](https://img.shields.io/pypi/v/pymaia-learn?logo=pypi)\n\n## What is PyMAIA?\n\nHive is a Python package to support Deep Learning data preparation, pre-processing. training, result visualization and\nmodel deployment across different frameworks ([nnUNet](https://github.com/MIC-DKFZ/nnUNet)\n, [nnDetection](https://github.com/MIC-DKFZ/nnDetection), [MONAI](https://monai.io/) ).\n\n## Local Environment Setup\n\nTo install the package, run the following commands:\n\n```bash\nconda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia\nor conda install cudatoolkit cuda-version=11\npip install nnunetv2/nndetection\npip install pymaia-learn\n```\n\nMore information can be found in the [documentation](https://pymaia.readthedocs.io/en/latest/).\n\n## Tutorials\n\n- [nnUNet Tutorial](https://pymaia.readthedocs.io/en/latest/tutorials/nnUNet_tutorial.html)\n- [nnDetection Tutorial](https://pymaia.readthedocs.io/en/latest/tutorials/nnDetection_tutorial.html)\n\n## Docker and Singularity\nPyMAIA can be run in a containerized environment using Docker or Singularity. To\ncreate the PyMAIA image, you can use [HPPCM](https://github.com/NVIDIA/hpc-container-maker), a tool to create container\nimages for HPC applications from given recipes.\n\n```bash\npip install hpccm\n\nhpccm --recipe recipe.py --format singularity > PyMAIA.def\nsingularity build PyMAIA.sif PyMAIA.def\n\nhpccm --recipe recipe.py --format docker > Dockerfile\ndocker build -t pymaia .\n```\n",
"bugtrack_url": null,
"license": "GPLv3",
"summary": "Python Package to support Deep Learning data preparation, pre-processing. training, result visualization and model deployment across different frameworks (nnUNet, nnDetection, MONAI).",
"version": "1.2.1",
"project_urls": {
"Bug Tracker": "https://github.com/SimoneBendazzoli93/PyMAIA/issues",
"Documentation": "https://pymaia.readthedocs.io",
"Homepage": "https://github.com/SimoneBendazzoli93/PyMAIA.git",
"Source Code": "https://github.com/SimoneBendazzoli93/PyMAIA"
},
"split_keywords": [
"deep learning",
" image segmentation",
" medical image analysis",
" medical image segmentation",
" object detection"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f4ef0e7a607b41bae71e1fa28ac08829cceb7a270684253e27572e6bc27b8c24",
"md5": "0bc938b55d60a2978205366ffa7d05fa",
"sha256": "492145a3fc24c44bbafadaa5b0b11b539e9354e0174fb2c4dcb06956ea6d3abd"
},
"downloads": -1,
"filename": "pymaia_learn-1.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0bc938b55d60a2978205366ffa7d05fa",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 60622,
"upload_time": "2024-10-18T08:47:25",
"upload_time_iso_8601": "2024-10-18T08:47:25.462145Z",
"url": "https://files.pythonhosted.org/packages/f4/ef/0e7a607b41bae71e1fa28ac08829cceb7a270684253e27572e6bc27b8c24/pymaia_learn-1.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "bbd587a5ecf83915eefa20b8f82f66ae5d8e9eeed3a95ce7196e131674b29b42",
"md5": "fca5b92cbea006f56cce867abea8bd80",
"sha256": "72173df42b5c2d1a6aac703c87d4255aaa815073b3fa5fd68eec12e68cd85408"
},
"downloads": -1,
"filename": "pymaia_learn-1.2.1.tar.gz",
"has_sig": false,
"md5_digest": "fca5b92cbea006f56cce867abea8bd80",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 62018,
"upload_time": "2024-10-18T08:47:27",
"upload_time_iso_8601": "2024-10-18T08:47:27.271660Z",
"url": "https://files.pythonhosted.org/packages/bb/d5/87a5ecf83915eefa20b8f82f66ae5d8e9eeed3a95ce7196e131674b29b42/pymaia_learn-1.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-18 08:47:27",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "SimoneBendazzoli93",
"github_project": "PyMAIA",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "coloredlogs",
"specs": []
},
{
"name": "dicom2nifti",
"specs": []
},
{
"name": "nibabel",
"specs": []
},
{
"name": "nilearn",
"specs": []
},
{
"name": "numpy",
"specs": []
},
{
"name": "pydicom",
"specs": [
[
"==",
"2.4.4"
]
]
},
{
"name": "pydicom_seg",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "SimpleITK",
"specs": []
},
{
"name": "tqdm",
"specs": []
},
{
"name": "pandas",
"specs": []
},
{
"name": "scikit_learn",
"specs": []
},
{
"name": "openpyxl",
"specs": []
},
{
"name": "mlflow",
"specs": []
},
{
"name": "torch",
"specs": []
}
],
"tox": true,
"lcname": "pymaia-learn"
}