.. image:: https://github.com/materialsvirtuallab/pymatgen-analysis-diffusion/actions/workflows/testing.yml/badge.svg
:alt: CI Status
:target: https://github.com/materialsvirtuallab/pymatgen-diffusion/actions/workflows/testing.yml
.. image:: https://codecov.io/gh/materialsvirtuallab/pymatgen-analysis-diffusion/graph/badge.svg?token=4lH4UZcXye
:target: https://codecov.io/gh/materialsvirtuallab/pymatgen-analysis-diffusion
pymatgen-analysis-diffusion
===========================
Formerly pymatgen-diffusion, this is an add-on to pymatgen for diffusion
analysis that is developed by the Materials Virtual Lab. Note that it relies on
pymatgen for structural manipulations, file io, and preliminary analyses. This is
and will always be, a scientific work in progress. Pls check back regularly for
more details.
Documentation available via `Github Pages <https://github.com/materialsvirtuallab/pymatgen-analysis-diffusion>`_.
Major Update (v2021.3.5)
========================
pymatgen-analysis-diffusion is now released as a namespace package `pymatgen-analysis-diffusion` on PyPI. It should be
imported via `pymatgen.analysis.diffusion` instead `pymatgen_diffusion`. To install this package via pip::
pip install pymatgen-analysis-diffusion
Features (non-exhaustive!)
==========================
1. Van-Hove analysis
2. Probability density
3. Clustering (e.g., k-means with periodic boundary conditions).
4. Migration path finding and IDPP.
Citing
======
If you use pymatgen-diffusion in your research, please cite the following
work::
Deng, Z.; Zhu, Z.; Chu, I.H.; Ong, S. P. Data-Driven First-Principles
Methods for the Study and Design of Alkali Superionic Conductors,
Chem. Mater., 2016, acs.chemmater.6b02648, doi:10.1021/acs.chemmater.6b02648.
You should also include the following citation for the pymatgen core package
given that it forms the basis for most of the analyses::
Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier,
Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A.
Persson, Gerbrand Ceder. *Python Materials Genomics (pymatgen) : A Robust,
Open-Source Python Library for Materials Analysis.* Computational
Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028.
In addition, some of the analyses may also have relevant publications that
you should cite. Please consult the documentation of each module.
Contributing
============
We welcome contributions in all forms. If you'd like to contribute, please
fork this repository, make changes and send us a pull request!
Acknowledgments
===============
We gratefully acknowledge funding from the following agencies for the
development of this code:
1. US National Science Foundation’s Designing Materials to Revolutionize and
Engineer our Future (DMREF) program under Grant No. 1436976 for the AIMD
analysis package.
2. US Department of Energy, Office of Science, Basic Energy Sciences under
Award No. DE-SC0012118 for the NEB analysis package.
Raw data
{
"_id": null,
"home_page": null,
"name": "pymatgen-analysis-diffusion",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": "Shyue Ping Ong <ongsp@ucsd.edu>",
"keywords": "ABINIT, analysis, crystal, diagrams, electronic, gaussian, materials, nwchem, phase, project, qchem, science, structure, VASP, diffusion, molecular dynamics, MD",
"author": null,
"author_email": "Materials Virtual Lab <ongsp@ucsd.edu>",
"download_url": "https://files.pythonhosted.org/packages/cb/41/afb3195a1e83f41dd9668cb29850d59cf1539dce71ec1e4f5593c05d2fc7/pymatgen_analysis_diffusion-2024.7.15.tar.gz",
"platform": null,
"description": ".. image:: https://github.com/materialsvirtuallab/pymatgen-analysis-diffusion/actions/workflows/testing.yml/badge.svg\n :alt: CI Status\n :target: https://github.com/materialsvirtuallab/pymatgen-diffusion/actions/workflows/testing.yml\n\n.. image:: https://codecov.io/gh/materialsvirtuallab/pymatgen-analysis-diffusion/graph/badge.svg?token=4lH4UZcXye\n :target: https://codecov.io/gh/materialsvirtuallab/pymatgen-analysis-diffusion\n\npymatgen-analysis-diffusion\n===========================\n\nFormerly pymatgen-diffusion, this is an add-on to pymatgen for diffusion\nanalysis that is developed by the Materials Virtual Lab. Note that it relies on\npymatgen for structural manipulations, file io, and preliminary analyses. This is\nand will always be, a scientific work in progress. Pls check back regularly for\nmore details.\n\nDocumentation available via `Github Pages <https://github.com/materialsvirtuallab/pymatgen-analysis-diffusion>`_.\n\nMajor Update (v2021.3.5)\n========================\n\npymatgen-analysis-diffusion is now released as a namespace package `pymatgen-analysis-diffusion` on PyPI. It should be\nimported via `pymatgen.analysis.diffusion` instead `pymatgen_diffusion`. To install this package via pip::\n\n pip install pymatgen-analysis-diffusion\n\nFeatures (non-exhaustive!)\n==========================\n\n1. Van-Hove analysis\n2. Probability density\n3. Clustering (e.g., k-means with periodic boundary conditions).\n4. Migration path finding and IDPP.\n\nCiting\n======\n\nIf you use pymatgen-diffusion in your research, please cite the following\nwork::\n\n Deng, Z.; Zhu, Z.; Chu, I.H.; Ong, S. P. Data-Driven First-Principles\n Methods for the Study and Design of Alkali Superionic Conductors,\n Chem. Mater., 2016, acs.chemmater.6b02648, doi:10.1021/acs.chemmater.6b02648.\n\nYou should also include the following citation for the pymatgen core package\ngiven that it forms the basis for most of the analyses::\n\n Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier,\n Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A.\n Persson, Gerbrand Ceder. *Python Materials Genomics (pymatgen) : A Robust,\n Open-Source Python Library for Materials Analysis.* Computational\n Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028.\n\nIn addition, some of the analyses may also have relevant publications that\nyou should cite. Please consult the documentation of each module.\n\nContributing\n============\n\nWe welcome contributions in all forms. If you'd like to contribute, please\nfork this repository, make changes and send us a pull request!\n\nAcknowledgments\n===============\n\nWe gratefully acknowledge funding from the following agencies for the\ndevelopment of this code:\n\n1. US National Science Foundation\u2019s Designing Materials to Revolutionize and\n Engineer our Future (DMREF) program under Grant No. 1436976 for the AIMD\n analysis package.\n2. US Department of Energy, O\ufb03ce of Science, Basic Energy Sciences under\n Award No. DE-SC0012118 for the NEB analysis package.\n",
"bugtrack_url": null,
"license": "BSD",
"summary": "Pymatgen add-on for diffusion analysis.",
"version": "2024.7.15",
"project_urls": {
"Documentation": "http://materialsvirtuallab.github.io/pymatgen-analysis-diffusion/",
"Homepage": "http://materialsvirtuallab.github.io/pymatgen-analysis-diffusion/",
"Issues": "https://github.com/materialsvirtuallab/pymatgen-analysis-diffusion/issues",
"Pypi": "https://pypi.org/project/pymatgen-analysis-diffusion",
"Repository": "https://github.com/materialsvirtuallab/pymatgen-analysis-diffusion"
},
"split_keywords": [
"abinit",
" analysis",
" crystal",
" diagrams",
" electronic",
" gaussian",
" materials",
" nwchem",
" phase",
" project",
" qchem",
" science",
" structure",
" vasp",
" diffusion",
" molecular dynamics",
" md"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "854292f77f475f9a8d1026819d55e0bd4ffd9e86b993b84916de70fc9873eb43",
"md5": "83f36470e773f1da38e50dbd4ef7af1d",
"sha256": "4f1bbd63de6ffb1f73894cc8fa861cd2488b3daa4d6de2195953231ca8ec02fb"
},
"downloads": -1,
"filename": "pymatgen_analysis_diffusion-2024.7.15-py3-none-any.whl",
"has_sig": false,
"md5_digest": "83f36470e773f1da38e50dbd4ef7af1d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 87262,
"upload_time": "2024-07-15T17:35:07",
"upload_time_iso_8601": "2024-07-15T17:35:07.376845Z",
"url": "https://files.pythonhosted.org/packages/85/42/92f77f475f9a8d1026819d55e0bd4ffd9e86b993b84916de70fc9873eb43/pymatgen_analysis_diffusion-2024.7.15-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cb41afb3195a1e83f41dd9668cb29850d59cf1539dce71ec1e4f5593c05d2fc7",
"md5": "b1f2c85d75f2ad25c1c08407396388c7",
"sha256": "66e628f44127b34d3d652c90aa6b447b282e27daca92c642fda193b38af2288a"
},
"downloads": -1,
"filename": "pymatgen_analysis_diffusion-2024.7.15.tar.gz",
"has_sig": false,
"md5_digest": "b1f2c85d75f2ad25c1c08407396388c7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 78764,
"upload_time": "2024-07-15T17:35:09",
"upload_time_iso_8601": "2024-07-15T17:35:09.928403Z",
"url": "https://files.pythonhosted.org/packages/cb/41/afb3195a1e83f41dd9668cb29850d59cf1539dce71ec1e4f5593c05d2fc7/pymatgen_analysis_diffusion-2024.7.15.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-15 17:35:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "materialsvirtuallab",
"github_project": "pymatgen-analysis-diffusion",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "pymatgen",
"specs": [
[
"==",
"2024.10.27"
]
]
},
{
"name": "joblib",
"specs": [
[
"==",
"1.4.2"
]
]
},
{
"name": "ase",
"specs": [
[
"==",
"3.23.0"
]
]
},
{
"name": "seaborn",
"specs": [
[
"==",
"0.13.2"
]
]
}
],
"lcname": "pymatgen-analysis-diffusion"
}