## Installation
```
pip install pymathnn
```
## Utilization
Simple examples of user:
```
from pymathnn import Matrix
m1 = Matrix((3, 3), init='random')
m2 = Matrix((3, 3), init='uniform')
# Sum matrix
m3 = m1.add(m2)
# Product With Scalar
m4 = m1.multiply(2.5)
# Matrix Traspose
mt = m1.transpose()
# Statistics
print(m1.mean())
print(m1.norm())
m1.summary()
# Activation
m1 = Matrix((4,4))
print(m1)
m1.activation('relu')
print(m1)
```
Raw data
{
"_id": null,
"home_page": null,
"name": "pymathnn",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "math numpy matrix neural network ai deep learning algebra cuda cupy transformer machine",
"author": "Daniele Frulla",
"author_email": "daniele.frulla@newstechnology.eu",
"download_url": "https://files.pythonhosted.org/packages/9b/49/b9923f92e1bdf2766f1e1b26d4bff447a481cef3ac9ca44757fe057154d9/pymathnn-0.1.4.tar.gz",
"platform": null,
"description": "## Installation\n\n```\npip install pymathnn\n```\n\n## Utilization\n\nSimple examples of user:\n\n```\nfrom pymathnn import Matrix\n\nm1 = Matrix((3, 3), init='random')\nm2 = Matrix((3, 3), init='uniform')\n\n# Sum matrix\nm3 = m1.add(m2)\n\n# Product With Scalar\nm4 = m1.multiply(2.5)\n\n# Matrix Traspose\nmt = m1.transpose()\n\n# Statistics\nprint(m1.mean())\nprint(m1.norm())\nm1.summary()\n\n# Activation\nm1 = Matrix((4,4))\nprint(m1)\nm1.activation('relu')\nprint(m1)\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "Python module for mathematical operations, matrix manipulations and neural network utilities using NumPy",
"version": "0.1.4",
"project_urls": null,
"split_keywords": [
"math",
"numpy",
"matrix",
"neural",
"network",
"ai",
"deep",
"learning",
"algebra",
"cuda",
"cupy",
"transformer",
"machine"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "8e002db64d6602e2fe70ab4ad9ec1b2c979934da1432df76c97060cbbaad0c5b",
"md5": "ed7be322d059f31b1150c5928ce56f1a",
"sha256": "d0a15919d817baf23b7eb8bd81ac7d9f54a60d07a55051cf439b1ba877d5370a"
},
"downloads": -1,
"filename": "pymathnn-0.1.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ed7be322d059f31b1150c5928ce56f1a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 5555,
"upload_time": "2025-07-30T06:35:55",
"upload_time_iso_8601": "2025-07-30T06:35:55.994048Z",
"url": "https://files.pythonhosted.org/packages/8e/00/2db64d6602e2fe70ab4ad9ec1b2c979934da1432df76c97060cbbaad0c5b/pymathnn-0.1.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9b49b9923f92e1bdf2766f1e1b26d4bff447a481cef3ac9ca44757fe057154d9",
"md5": "8860d7d3c10623c5dec9d03907707043",
"sha256": "af59d6d3578b47e00c5183fdfe4581b820da311f91721b6ff07337ce4ef01ca7"
},
"downloads": -1,
"filename": "pymathnn-0.1.4.tar.gz",
"has_sig": false,
"md5_digest": "8860d7d3c10623c5dec9d03907707043",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 4910,
"upload_time": "2025-07-30T06:35:57",
"upload_time_iso_8601": "2025-07-30T06:35:57.342777Z",
"url": "https://files.pythonhosted.org/packages/9b/49/b9923f92e1bdf2766f1e1b26d4bff447a481cef3ac9ca44757fe057154d9/pymathnn-0.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-30 06:35:57",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pymathnn"
}