## Installation
```
pip install pymathnn
```
## Utilization
Simple examples of user:
```
from pymathnn import Matrix
m1 = Matrix((3, 3), init='random')
m2 = Matrix((3, 3), init='uniform')
# Sum matrix
m3 = m1.add(m2)
# Product With Scalar
m4 = m1.multiply(2.5)
# Matrix Traspose
mt = m1.transpose()
# Statistics
print(m1.mean())
print(m1.norm())
m1.summary()
# Activation
m1 = Matrix((4,4))
print(m1)
m1.activation('relu')
print(m1)
```
Raw data
{
"_id": null,
"home_page": null,
"name": "pymathnn",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "math numpy matrix neural network ai deep learning algebra cuda cupy transformer machine",
"author": "Daniele Frulla",
"author_email": "daniele.frulla@newstechnology.eu",
"download_url": "https://files.pythonhosted.org/packages/bd/13/7dee95dd62e99f4dc879a41370e07402bf006aed0673b1e7ff63f4dff0dc/pymathnn-0.2.7.tar.gz",
"platform": null,
"description": "## Installation\n\n```\npip install pymathnn\n```\n\n## Utilization\n\nSimple examples of user:\n\n```\nfrom pymathnn import Matrix\n\nm1 = Matrix((3, 3), init='random')\nm2 = Matrix((3, 3), init='uniform')\n\n# Sum matrix\nm3 = m1.add(m2)\n\n# Product With Scalar\nm4 = m1.multiply(2.5)\n\n# Matrix Traspose\nmt = m1.transpose()\n\n# Statistics\nprint(m1.mean())\nprint(m1.norm())\nm1.summary()\n\n# Activation\nm1 = Matrix((4,4))\nprint(m1)\nm1.activation('relu')\nprint(m1)\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "Python module for mathematical operations, matrix manipulations and neural network utilities using NumPy",
"version": "0.2.7",
"project_urls": null,
"split_keywords": [
"math",
"numpy",
"matrix",
"neural",
"network",
"ai",
"deep",
"learning",
"algebra",
"cuda",
"cupy",
"transformer",
"machine"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "f346dc77cea3535019803bedddf1225599a7dbde2f2444fea98d1c31372d3a7e",
"md5": "8c7abedb513ac9fd9d60f515315c2805",
"sha256": "51a15e0b77f25944356a18e45e3f1bc96dc5f5941e0d08708e1a629506622061"
},
"downloads": -1,
"filename": "pymathnn-0.2.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8c7abedb513ac9fd9d60f515315c2805",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 9349,
"upload_time": "2025-08-03T19:26:34",
"upload_time_iso_8601": "2025-08-03T19:26:34.066310Z",
"url": "https://files.pythonhosted.org/packages/f3/46/dc77cea3535019803bedddf1225599a7dbde2f2444fea98d1c31372d3a7e/pymathnn-0.2.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "bd137dee95dd62e99f4dc879a41370e07402bf006aed0673b1e7ff63f4dff0dc",
"md5": "ccad615ac86e96027ef62b1d81164cde",
"sha256": "4107772943b890c41d9419c72f81e5dcf873457873c0e713c7fcb027185d1bf4"
},
"downloads": -1,
"filename": "pymathnn-0.2.7.tar.gz",
"has_sig": false,
"md5_digest": "ccad615ac86e96027ef62b1d81164cde",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 7743,
"upload_time": "2025-08-03T19:26:34",
"upload_time_iso_8601": "2025-08-03T19:26:34.887991Z",
"url": "https://files.pythonhosted.org/packages/bd/13/7dee95dd62e99f4dc879a41370e07402bf006aed0673b1e7ff63f4dff0dc/pymathnn-0.2.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-03 19:26:34",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pymathnn"
}