pystk2-gymnasium


Namepystk2-gymnasium JSON
Version 0.7.0 PyPI version JSON
download
home_pagehttps://github.com/bpiwowar/pystk2-gymnasium
SummaryGymnasium wrapper for PySTK2
upload_time2024-11-12 13:12:11
maintainerNone
docs_urlNone
authorBenjamin Piwowarski
requires_python<4.0,>=3.8
licenseGPL
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PySuperTuxKart gymnasium wrapper

[![PyPI
version](https://badge.fury.io/py/pystk2-gymnasium.svg)](https://badge.fury.io/py/pystk2-gymnasium)

Read the [Changelog](./CHANGELOG.md)

## Install

The PySuperKart2 gymnasium wrapper is a Python package, so installing is fairly
easy

`pip install pystk2-gymnasium`

Note that during the first run, SuperTuxKart assets are downloaded in the cache
directory.

## AgentSpec

Each controlled kart is parametrized by `pystk2_gymnasium.AgentSpec`:

- `name` defines name of the player (displayed on top of the kart)
- `rank_start` defines the starting position (None for random, which is the
  default)
- `use_ai` flag (False by default) to ignore actions (when calling `step`,  a
  SuperTuxKart bot is used instead of using the action)
- `camera_mode` can be set to `AUTO` (camera on for non STK bots), `ON` (camera
  on) or `OFF` (no camera).


## Current limitations

-  no graphics information is available (i.e. pixmap)


## Environments

After importing `pystk2_gymnasium`, the following environments are available:

- `supertuxkart/full-v0` is the main environment containing complete
  observations. The observation and action spaces are both dictionaries with
  continuous or discrete variables (see below). The exact structure can be found
  using `env.observation_space` and `env.action_space`. The following options
  can be used to modify the environment:
    - `agent` is an `AgentSpec (see above)`
    - `render_mode` can be None or `human`
    - `track` defines the SuperTuxKart track to use (None for random). The full
      list can be found in `STKRaceEnv.TRACKS` after initialization with
      `initialize.initialize(with_graphics: bool)` has been called.
    - `num_kart` defines the number of karts on the track (3 by default)
    - `max_paths` the maximum number of the (nearest) paths (a track is made of
      paths) to consider in the observation state
    - `laps` is the number of laps (1 by default)
    - `difficulty` is the difficulty of the AI bots (lowest 0 to highest 2,
      default to 2)

Some environments are created using wrappers (see below for wrapper
documentation),
- `supertuxkart/simple-v0` (wrappers: `ConstantSizedObservations`) is a
  simplified environment with a fixed number of observations for paths
  (controlled by `state_paths`, default 5), items (`state_items`, default 5),
  karts (`state_karts`, default 5)
- `supertuxkart/flattened-v0` (wrappers: `ConstantSizedObservations`,
  `PolarObservations`, `FlattenerWrapper`) has observation and action spaces
  simplified at the maximum (only `discrete` and `continuous` keys)
- `supertuxkart/flattened_continuous_actions-v0` (wrappers: `ConstantSizedObservations`, `PolarObservations`, `OnlyContinuousActionsWrapper`, `FlattenerWrapper`) removes discrete actions
  (default to 0) so this is steer/acceleration only in the continuous domain
- `supertuxkart/flattened_multidiscrete-v0` (wrappers: `ConstantSizedObservations`, `PolarObservations`, `DiscreteActionsWrapper`, `FlattenerWrapper`) is like the previous one, but with
  fully multi-discrete actions. `acceleration_steps` and `steer_steps` (default
  to 5) control the number of discrete values for acceleration and steering
  respectively.
- `supertuxkart/flattened_discrete-v0` (wrappers: `ConstantSizedObservations`, `PolarObservations`, `DiscreteActionsWrapper`, `FlattenerWrapper`, `FlattenMultiDiscreteActions`) is like the previous one, but with fully
  discretized actions

The reward $r_t$ at time $t$ is given by

$$ r_{t} =  \frac{1}{10}(d_{t} - d_{t-1}) + (1 - \frac{\mathrm{pos}_t}{K})
\times (3 + 7 f_t) - 0.1 + 10 * f_t $$

where $d_t$ is the overall track distance at time $t$, $\mathrm{pos}_t$ the
position among the $K$ karts at time $t$, and $f_t$ is $1$ when the kart
finishes the race.

## Wrappers

Wrappers can be used to modify the environment.

### Constant-size observation

`pystk2_gymnasium.ConstantSizedObservations( env, state_items=5,
  state_karts=5, state_paths=5 )` ensures that the number of observed items,
karts and paths is constant. By default, the number of observations per category
is 5.

### Polar observations

`pystk2_gymnasium.PolarObservations(env)` changes Cartesian
coordinates to polar ones (angle in the horizontal plane, angle in the vertical plan, and distance) of all 3D vectors.

### Discrete actions

`pystk2_gymnasium.DiscreteActionsWrapper(env, acceleration_steps=5, steer_steps=7)` discretizes acceleration and steer actions (5 and 7 values respectively).

### Flattener (actions and observations)

This wrapper groups all continuous and discrete spaces together.

`pystk2_gymnasium.FlattenerWrapper(env)` flattens **actions and
observations**. The base environment should be a dictionary of observation
spaces. The transformed environment is a dictionary made with two entries,
`discrete` and `continuous` (if both continuous and discrete
observations/actions are present in the initial environment, otherwise it is
either the type of `discrete` or `continuous`). `discrete` is `MultiDiscrete`
space that combines all the discrete (and multi-discrete) observations, while
`continuous` is a `Box` space.

### Flatten multi-discrete actions

`pystk2_gymnasium.FlattenMultiDiscreteActions(env)` flattens a multi-discrete
action space into a discrete one, with one action per possible unique choice of
actions. For instance, if the initial space is $\{0, 1\} \times \{0, 1, 2\}$,
the action space becomes $\{0, 1, \ldots, 6\}$.


## Multi-agent environment

`supertuxkart/multi-full-v0` can be used to control multiple karts. It takes an
`agents` parameter that is a list of `AgentSpec`. Observations and actions are a
dictionary of single-kart ones where **string** keys that range from `0` to
`n-1` with `n` the number of karts.

To use different gymnasium wrappers, one can use a `MonoAgentWrapperAdapter`.

Let's look at an example to illustrate this:

```py

from pystk_gymnasium import AgentSpec

agents = [
    AgentSpec(use_ai=True, name="Yin Team", camera_mode=CameraMode.ON),
    AgentSpec(use_ai=True, name="Yang Team", camera_mode=CameraMode.ON),
    AgentSpec(use_ai=True, name="Zen Team", camera_mode=CameraMode.ON)
]

wrappers = [
    partial(MonoAgentWrapperAdapter, wrapper_factories={
        "0": lambda env: ConstantSizedObservations(env),
        "1": lambda env: PolarObservations(ConstantSizedObservations(env)),
        "2": lambda env: PolarObservations(ConstantSizedObservations(env))
    }),
]

make_stkenv = partial(
    make_env,
    "supertuxkart/multi-full-v0",
    render_mode="human",
    num_kart=5,
    agents=agents,
    wrappers=wrappers
)
```

## Action and observation space

All the 3D vectors are within the kart referential (`z` front, `x` left, `y`
up):

- `distance_down_track`: The distance from the start
- `energy`: remaining collected energy
- `front`: front of the kart (3D vector)
- `attachment`: the item attached to the kart (bonus box, banana, nitro/big,
  nitro/small, bubble gum, easter egg)
- `attachment_time_left`: how much time the attachment will be kept
- `items_position`: position of the items (3D vectors)
- `items_type`: type of the item
- `jumping`: is the kart jumping
- `karts_position`: position of other karts, beginning with the ones in front
- `max_steer_angle` the max angle of the steering (given the current speed)
- `center_path_distance`: distance to the center of the path
- `center_path`: vector to the center of the path
- `paths_start`, `paths_end`, `paths_width`: 3D vectors to the paths start and
  end, and vector of their widths (scalar). The paths are sorted so that the
  first element of the array is the current one.
- `paths_distance`: the distance of the paths starts and ends (vector of
  dimension 2)
- `powerup`: collected power-up
- `shield_time`
- `skeed_factor`
- `velocity`: velocity vector

## Example

```py3
import gymnasium as gym
from pystk2_gymnasium import AgentSpec


# STK gymnasium uses one process
if __name__ == '__main__':
  # Use a a flattened version of the observation and action spaces
  # In both case, this corresponds to a dictionary with two keys:
  # - `continuous` is a vector corresponding to the continuous observations
  # - `discrete` is a vector (of integers) corresponding to discrete observations
  env = gym.make("supertuxkart/flattened-v0", render_mode="human", agent=AgentSpec(use_ai=False))

  ix = 0
  done = False
  state, *_ = env.reset()

  while not done:
      ix += 1
      action = env.action_space.sample()
      state, reward, terminated, truncated, _ = env.step(action)
      done = truncated or terminated

  # Important to stop the STK process
  env.close()
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/bpiwowar/pystk2-gymnasium",
    "name": "pystk2-gymnasium",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "Benjamin Piwowarski",
    "author_email": "benjamin@piwowarski.fr",
    "download_url": "https://files.pythonhosted.org/packages/63/5e/23f807106a0adc1ed5bd5a90a9fc43ac23d11ed54d8805793a5d4ecd1b41/pystk2_gymnasium-0.7.0.tar.gz",
    "platform": null,
    "description": "# PySuperTuxKart gymnasium wrapper\n\n[![PyPI\nversion](https://badge.fury.io/py/pystk2-gymnasium.svg)](https://badge.fury.io/py/pystk2-gymnasium)\n\nRead the [Changelog](./CHANGELOG.md)\n\n## Install\n\nThe PySuperKart2 gymnasium wrapper is a Python package, so installing is fairly\neasy\n\n`pip install pystk2-gymnasium`\n\nNote that during the first run, SuperTuxKart assets are downloaded in the cache\ndirectory.\n\n## AgentSpec\n\nEach controlled kart is parametrized by `pystk2_gymnasium.AgentSpec`:\n\n- `name` defines name of the player (displayed on top of the kart)\n- `rank_start` defines the starting position (None for random, which is the\n  default)\n- `use_ai` flag (False by default) to ignore actions (when calling `step`,  a\n  SuperTuxKart bot is used instead of using the action)\n- `camera_mode` can be set to `AUTO` (camera on for non STK bots), `ON` (camera\n  on) or `OFF` (no camera).\n\n\n## Current limitations\n\n-  no graphics information is available (i.e. pixmap)\n\n\n## Environments\n\nAfter importing `pystk2_gymnasium`, the following environments are available:\n\n- `supertuxkart/full-v0` is the main environment containing complete\n  observations. The observation and action spaces are both dictionaries with\n  continuous or discrete variables (see below). The exact structure can be found\n  using `env.observation_space` and `env.action_space`. The following options\n  can be used to modify the environment:\n    - `agent` is an `AgentSpec (see above)`\n    - `render_mode` can be None or `human`\n    - `track` defines the SuperTuxKart track to use (None for random). The full\n      list can be found in `STKRaceEnv.TRACKS` after initialization with\n      `initialize.initialize(with_graphics: bool)` has been called.\n    - `num_kart` defines the number of karts on the track (3 by default)\n    - `max_paths` the maximum number of the (nearest) paths (a track is made of\n      paths) to consider in the observation state\n    - `laps` is the number of laps (1 by default)\n    - `difficulty` is the difficulty of the AI bots (lowest 0 to highest 2,\n      default to 2)\n\nSome environments are created using wrappers (see below for wrapper\ndocumentation),\n- `supertuxkart/simple-v0` (wrappers: `ConstantSizedObservations`) is a\n  simplified environment with a fixed number of observations for paths\n  (controlled by `state_paths`, default 5), items (`state_items`, default 5),\n  karts (`state_karts`, default 5)\n- `supertuxkart/flattened-v0` (wrappers: `ConstantSizedObservations`,\n  `PolarObservations`, `FlattenerWrapper`) has observation and action spaces\n  simplified at the maximum (only `discrete` and `continuous` keys)\n- `supertuxkart/flattened_continuous_actions-v0` (wrappers: `ConstantSizedObservations`, `PolarObservations`, `OnlyContinuousActionsWrapper`, `FlattenerWrapper`) removes discrete actions\n  (default to 0) so this is steer/acceleration only in the continuous domain\n- `supertuxkart/flattened_multidiscrete-v0` (wrappers: `ConstantSizedObservations`, `PolarObservations`, `DiscreteActionsWrapper`, `FlattenerWrapper`) is like the previous one, but with\n  fully multi-discrete actions. `acceleration_steps` and `steer_steps` (default\n  to 5) control the number of discrete values for acceleration and steering\n  respectively.\n- `supertuxkart/flattened_discrete-v0` (wrappers: `ConstantSizedObservations`, `PolarObservations`, `DiscreteActionsWrapper`, `FlattenerWrapper`, `FlattenMultiDiscreteActions`) is like the previous one, but with fully\n  discretized actions\n\nThe reward $r_t$ at time $t$ is given by\n\n$$ r_{t} =  \\frac{1}{10}(d_{t} - d_{t-1}) + (1 - \\frac{\\mathrm{pos}_t}{K})\n\\times (3 + 7 f_t) - 0.1 + 10 * f_t $$\n\nwhere $d_t$ is the overall track distance at time $t$, $\\mathrm{pos}_t$ the\nposition among the $K$ karts at time $t$, and $f_t$ is $1$ when the kart\nfinishes the race.\n\n## Wrappers\n\nWrappers can be used to modify the environment.\n\n### Constant-size observation\n\n`pystk2_gymnasium.ConstantSizedObservations( env, state_items=5,\n  state_karts=5, state_paths=5 )` ensures that the number of observed items,\nkarts and paths is constant. By default, the number of observations per category\nis 5.\n\n### Polar observations\n\n`pystk2_gymnasium.PolarObservations(env)` changes Cartesian\ncoordinates to polar ones (angle in the horizontal plane, angle in the vertical plan, and distance) of all 3D vectors.\n\n### Discrete actions\n\n`pystk2_gymnasium.DiscreteActionsWrapper(env, acceleration_steps=5, steer_steps=7)` discretizes acceleration and steer actions (5 and 7 values respectively).\n\n### Flattener (actions and observations)\n\nThis wrapper groups all continuous and discrete spaces together.\n\n`pystk2_gymnasium.FlattenerWrapper(env)` flattens **actions and\nobservations**. The base environment should be a dictionary of observation\nspaces. The transformed environment is a dictionary made with two entries,\n`discrete` and `continuous` (if both continuous and discrete\nobservations/actions are present in the initial environment, otherwise it is\neither the type of `discrete` or `continuous`). `discrete` is `MultiDiscrete`\nspace that combines all the discrete (and multi-discrete) observations, while\n`continuous` is a `Box` space.\n\n### Flatten multi-discrete actions\n\n`pystk2_gymnasium.FlattenMultiDiscreteActions(env)` flattens a multi-discrete\naction space into a discrete one, with one action per possible unique choice of\nactions. For instance, if the initial space is $\\{0, 1\\} \\times \\{0, 1, 2\\}$,\nthe action space becomes $\\{0, 1, \\ldots, 6\\}$.\n\n\n## Multi-agent environment\n\n`supertuxkart/multi-full-v0` can be used to control multiple karts. It takes an\n`agents` parameter that is a list of `AgentSpec`. Observations and actions are a\ndictionary of single-kart ones where **string** keys that range from `0` to\n`n-1` with `n` the number of karts.\n\nTo use different gymnasium wrappers, one can use a `MonoAgentWrapperAdapter`.\n\nLet's look at an example to illustrate this:\n\n```py\n\nfrom pystk_gymnasium import AgentSpec\n\nagents = [\n    AgentSpec(use_ai=True, name=\"Yin Team\", camera_mode=CameraMode.ON),\n    AgentSpec(use_ai=True, name=\"Yang Team\", camera_mode=CameraMode.ON),\n    AgentSpec(use_ai=True, name=\"Zen Team\", camera_mode=CameraMode.ON)\n]\n\nwrappers = [\n    partial(MonoAgentWrapperAdapter, wrapper_factories={\n        \"0\": lambda env: ConstantSizedObservations(env),\n        \"1\": lambda env: PolarObservations(ConstantSizedObservations(env)),\n        \"2\": lambda env: PolarObservations(ConstantSizedObservations(env))\n    }),\n]\n\nmake_stkenv = partial(\n    make_env,\n    \"supertuxkart/multi-full-v0\",\n    render_mode=\"human\",\n    num_kart=5,\n    agents=agents,\n    wrappers=wrappers\n)\n```\n\n## Action and observation space\n\nAll the 3D vectors are within the kart referential (`z` front, `x` left, `y`\nup):\n\n- `distance_down_track`: The distance from the start\n- `energy`: remaining collected energy\n- `front`: front of the kart (3D vector)\n- `attachment`: the item attached to the kart (bonus box, banana, nitro/big,\n  nitro/small, bubble gum, easter egg)\n- `attachment_time_left`: how much time the attachment will be kept\n- `items_position`: position of the items (3D vectors)\n- `items_type`: type of the item\n- `jumping`: is the kart jumping\n- `karts_position`: position of other karts, beginning with the ones in front\n- `max_steer_angle` the max angle of the steering (given the current speed)\n- `center_path_distance`: distance to the center of the path\n- `center_path`: vector to the center of the path\n- `paths_start`, `paths_end`, `paths_width`: 3D vectors to the paths start and\n  end, and vector of their widths (scalar). The paths are sorted so that the\n  first element of the array is the current one.\n- `paths_distance`: the distance of the paths starts and ends (vector of\n  dimension 2)\n- `powerup`: collected power-up\n- `shield_time`\n- `skeed_factor`\n- `velocity`: velocity vector\n\n## Example\n\n```py3\nimport gymnasium as gym\nfrom pystk2_gymnasium import AgentSpec\n\n\n# STK gymnasium uses one process\nif __name__ == '__main__':\n  # Use a a flattened version of the observation and action spaces\n  # In both case, this corresponds to a dictionary with two keys:\n  # - `continuous` is a vector corresponding to the continuous observations\n  # - `discrete` is a vector (of integers) corresponding to discrete observations\n  env = gym.make(\"supertuxkart/flattened-v0\", render_mode=\"human\", agent=AgentSpec(use_ai=False))\n\n  ix = 0\n  done = False\n  state, *_ = env.reset()\n\n  while not done:\n      ix += 1\n      action = env.action_space.sample()\n      state, reward, terminated, truncated, _ = env.step(action)\n      done = truncated or terminated\n\n  # Important to stop the STK process\n  env.close()\n```\n",
    "bugtrack_url": null,
    "license": "GPL",
    "summary": "Gymnasium wrapper for PySTK2",
    "version": "0.7.0",
    "project_urls": {
        "Homepage": "https://github.com/bpiwowar/pystk2-gymnasium",
        "Repository": "https://github.com/bpiwowar/pystk2-gymnasium"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8019af7b754c97bb9bbf654619664ce797060c70001befb15a243576b8e65fbd",
                "md5": "61ca2160ac14faef5a0af74b4e782011",
                "sha256": "73f3fc410434785e771e43be5f9a9c88bcd05f7bc0e0f3a0985431901365b033"
            },
            "downloads": -1,
            "filename": "pystk2_gymnasium-0.7.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "61ca2160ac14faef5a0af74b4e782011",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.8",
            "size": 32034,
            "upload_time": "2024-11-12T13:12:10",
            "upload_time_iso_8601": "2024-11-12T13:12:10.218254Z",
            "url": "https://files.pythonhosted.org/packages/80/19/af7b754c97bb9bbf654619664ce797060c70001befb15a243576b8e65fbd/pystk2_gymnasium-0.7.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "635e23f807106a0adc1ed5bd5a90a9fc43ac23d11ed54d8805793a5d4ecd1b41",
                "md5": "91146dd76d9ce7d01b052298f3cc75a0",
                "sha256": "14d72afa7f2e8be0e14b02078162e74005b2207c76f934e9c83db753a439fe4e"
            },
            "downloads": -1,
            "filename": "pystk2_gymnasium-0.7.0.tar.gz",
            "has_sig": false,
            "md5_digest": "91146dd76d9ce7d01b052298f3cc75a0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.8",
            "size": 31622,
            "upload_time": "2024-11-12T13:12:11",
            "upload_time_iso_8601": "2024-11-12T13:12:11.242460Z",
            "url": "https://files.pythonhosted.org/packages/63/5e/23f807106a0adc1ed5bd5a90a9fc43ac23d11ed54d8805793a5d4ecd1b41/pystk2_gymnasium-0.7.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-12 13:12:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "bpiwowar",
    "github_project": "pystk2-gymnasium",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pystk2-gymnasium"
}
        
Elapsed time: 4.80846s