pytorch-gan-metrics


Namepytorch-gan-metrics JSON
Version 0.5.3 PyPI version JSON
download
home_pagehttps://github.com/w86763777/pytorch-gan-metrics
SummaryPackage for calculating GAN metrics using Pytorch
upload_time2023-09-08 04:45:57
maintainer
docs_urlNone
authorYi-Lun Wu
requires_python>=3.6
license
keywords pytorch gan inception score is frechet inception distance fid
VCS
bugtrack_url
requirements packaging tqdm scipy torch torchvision
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Pytorch Implementation of Common GAN metrics

![PyPI](https://img.shields.io/pypi/v/pytorch-gan-metrics)

## Install
```
pip install pytorch-gan-metrics
```
- `torch>=1.8.2`
- `torchvision>=0.9.2`

## Quick Start
```python
from pytorch_gan_metrics import get_inception_score, get_fid

images = ... # [N, 3, H, W] normalized to [0, 1]
IS, IS_std = get_inception_score(images)        # Inception Score
FID = get_fid(images, 'path/to/statistics.npz') # Frechet Inception Distance
```
`path/to/statistics.npz` is compatiable with [official](https://github.com/bioinf-jku/TTUR) FID implementation.

## Notes
The FID implementation is inspired from [pytorch-fid](https://github.com/mseitzer/pytorch-fid).

This repository is developed for personal research. If you think this package can also benefit your life, please feel free to open issues.

## Features
- Currently, this package supports following metrics:
  - [Inception Score](https://github.com/openai/improved-gan) (IS)
  - [Fréchet Inception Distance](https://github.com/bioinf-jku/TTUR) (FID)
- The computation procedure of IS and FID are integrated to avoid multiple forward propagations.
- Support reading images on the fly to avoid out of memory especially for large scale images.
- Support computation on GPU to speed up some cpu operations such as `np.cov` and `scipy.linalg.sqrtm`.

## Reproducing Results of Official Implementations on CIFAR-10

|                   |Train IS  |Test IS   |Train(50k) vs Test(10k)<br>FID|
|-------------------|:--------:|:--------:|:----------------------------:|
|Official           |11.24±0.20|10.98±0.22|3.1508                        |
|pytorch-gan-metrics|11.26±0.14|10.96±0.35|3.1518                        |
|pytorch-gan-metrics<br>`use_torch=True`|11.26±0.15|10.96±0.19|3.1509                        |

The results are slightly different from official implementations due to the framework difference between PyTorch and TensorFlow.

## Documentation

### Prepare Statistics (for FID)
- [Download](https://drive.google.com/drive/folders/1UBdzl6GtNMwNQ5U-4ESlIer43tNjiGJC?usp=sharing) precalculated statistics or
- Calculate statistics for your custom dataset using command line tool
    ```bash
    python -m pytorch_gan_metrics.calc_fid_stats \
        --path path/to/images \
        --stats path/to/statistics.npz
    ```
    See [calc_fid_stats.py](./pytorch_gan_metrics/calc_fid_stats.py) for details.

### Inception Features
- When getting IS or FID, the `InceptionV3` will be loaded into `torch.device('cuda:0')` if GPU is availabel; Otherwise, `torch.device('cpu')` will be used.
- Change `device` argument in `get_*` functions to set torch device.

### Using `torch.Tensor` as images

- Prepare images in type `torch.float32` with shape `[N, 3, H, W]` and normalized to `[0,1]`.
    ```python
    from pytorch_gan_metrics import (get_inception_score,
                                     get_fid,
                                     get_inception_score_and_fid)
    images = ... # [N, 3, H, W]
    assert 0 <= images.min() and images.max() <= 1
    # Inception Score
    IS, IS_std = get_inception_score(
        images)
    # Frechet Inception Distance
    FID = get_fid(
        images, 'path/to/statistics.npz')
    # Inception Score & Frechet Inception Distance
    (IS, IS_std), FID = get_inception_score_and_fid(
        images, 'path/to/statistics.npz')

    ```

### Using PyTorch DataLoader to Provide Images

- Use `pytorch_gan_metrics.ImageDataset` to collect images on your storage or use your custom `torch.utils.data.Dataset`.
    ```python
    from pytorch_gan_metrics import ImageDataset

    dataset = ImageDataset(path_to_dir, exts=['png', 'jpg'])
    loader = DataLoader(dataset, batch_size=50, num_workers=4)
    ```

- It is possible to wrap a generative model in a dataset to support generating images on the fly. Remember to set `num_workers=0` to avoid copying models across multiprocess.
    ```python
    class GeneratorDataset(Dataset):
        def __init__(self, G, z_dim):
            self.G = G
            self.z_dim = z_dim

        def __len__(self):
            return 50000

        def __getitem__(self, index):
            return self.G(torch.randn(1, self.z_dim).cuda())[0]

    dataset = GeneratorDataset(G, z=128)
    loader = DataLoader(dataset, batch_size=50, num_workers=0)
    ```

- Calculate metrics
    ```python
    from pytorch_gan_metrics import (get_inception_score,
                                     get_fid,
                                     get_inception_score_and_fid)
    # Inception Score
    IS, IS_std = get_inception_score(
        loader)
    # Frechet Inception Distance
    FID = get_fid(
        loader, 'path/to/statistics.npz')
    # Inception Score & Frechet Inception Distance
    (IS, IS_std), FID = get_inception_score_and_fid(
        loader, 'path/to/statistics.npz')
    ```

### Load Images from a Directory

- Calculate metrics for images in a directory and its subfolders.
    ```python
    from pytorch_gan_metrics import (
        get_inception_score_from_directory,
        get_fid_from_directory,
        get_inception_score_and_fid_from_directory)

    IS, IS_std = get_inception_score_from_directory(
        'path/to/images')
    FID = get_fid_from_directory(
        'path/to/images', 'path/to/statistics.npz')
    (IS, IS_std), FID = get_inception_score_and_fid_from_directory(
        'path/to/images', 'path/to/statistics.npz')
    ```

### Accelerating Matrix Computation by PyTorch

- Set `use_torch=True` when calling functions `get_*` such as `get_inception_score`, `get_fid`, etc.

- **WARNING** when `use_torch=True` is used, the FID might be `nan` due to the unstable implementation of matrix sqrt.

- This option is recommended to be used when evaluating generative models on a server which is equipped with high efficiency GPUs while the cpu frequency is low.

## Tested Versions
- `python 3.9 + torch 1.8.2 + CUDA 10.2`
- `python 3.9 + torch 1.11.0 + CUDA 10.2`
- `python 3.9 + torch 1.12.1 + CUDA 10.2`

## License

This implementation is licensed under the Apache License 2.0.

This implementation is derived from [pytorch-fid](https://github.com/mseitzer/pytorch-fid), licensed under the Apache License 2.0.

FID was introduced by Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler and Sepp Hochreiter in "GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium", see [https://arxiv.org/abs/1706.08500](https://arxiv.org/abs/1706.08500)

The original implementation of FID is by the Institute of Bioinformatics, JKU Linz, licensed under the Apache License 2.0.
See [https://github.com/bioinf-jku/TTUR](https://github.com/bioinf-jku/TTUR).



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/w86763777/pytorch-gan-metrics",
    "name": "pytorch-gan-metrics",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "PyTorch,GAN,Inception Score,IS,Frechet Inception Distance,FID",
    "author": "Yi-Lun Wu",
    "author_email": "w86763777@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/56/1f/92ab220f701a35d7c22c595ad2f280913c10d6316249eed4d8cd93fa6c46/pytorch_gan_metrics-0.5.3.tar.gz",
    "platform": null,
    "description": "# Pytorch Implementation of Common GAN metrics\n\n![PyPI](https://img.shields.io/pypi/v/pytorch-gan-metrics)\n\n## Install\n```\npip install pytorch-gan-metrics\n```\n- `torch>=1.8.2`\n- `torchvision>=0.9.2`\n\n## Quick Start\n```python\nfrom pytorch_gan_metrics import get_inception_score, get_fid\n\nimages = ... # [N, 3, H, W] normalized to [0, 1]\nIS, IS_std = get_inception_score(images)        # Inception Score\nFID = get_fid(images, 'path/to/statistics.npz') # Frechet Inception Distance\n```\n`path/to/statistics.npz` is compatiable with [official](https://github.com/bioinf-jku/TTUR) FID implementation.\n\n## Notes\nThe FID implementation is inspired from [pytorch-fid](https://github.com/mseitzer/pytorch-fid).\n\nThis repository is developed for personal research. If you think this package can also benefit your life, please feel free to open issues.\n\n## Features\n- Currently, this package supports following metrics:\n  - [Inception Score](https://github.com/openai/improved-gan) (IS)\n  - [Fr\u00e9chet Inception Distance](https://github.com/bioinf-jku/TTUR) (FID)\n- The computation procedure of IS and FID are integrated to avoid multiple forward propagations.\n- Support reading images on the fly to avoid out of memory especially for large scale images.\n- Support computation on GPU to speed up some cpu operations such as `np.cov` and `scipy.linalg.sqrtm`.\n\n## Reproducing Results of Official Implementations on CIFAR-10\n\n|                   |Train IS  |Test IS   |Train(50k) vs Test(10k)<br>FID|\n|-------------------|:--------:|:--------:|:----------------------------:|\n|Official           |11.24\u00b10.20|10.98\u00b10.22|3.1508                        |\n|pytorch-gan-metrics|11.26\u00b10.14|10.96\u00b10.35|3.1518                        |\n|pytorch-gan-metrics<br>`use_torch=True`|11.26\u00b10.15|10.96\u00b10.19|3.1509                        |\n\nThe results are slightly different from official implementations due to the framework difference between PyTorch and TensorFlow.\n\n## Documentation\n\n### Prepare Statistics (for FID)\n- [Download](https://drive.google.com/drive/folders/1UBdzl6GtNMwNQ5U-4ESlIer43tNjiGJC?usp=sharing) precalculated statistics or\n- Calculate statistics for your custom dataset using command line tool\n    ```bash\n    python -m pytorch_gan_metrics.calc_fid_stats \\\n        --path path/to/images \\\n        --stats path/to/statistics.npz\n    ```\n    See [calc_fid_stats.py](./pytorch_gan_metrics/calc_fid_stats.py) for details.\n\n### Inception Features\n- When getting IS or FID, the `InceptionV3` will be loaded into `torch.device('cuda:0')` if GPU is availabel; Otherwise, `torch.device('cpu')` will be used.\n- Change `device` argument in `get_*` functions to set torch device.\n\n### Using `torch.Tensor` as images\n\n- Prepare images in type `torch.float32` with shape `[N, 3, H, W]` and normalized to `[0,1]`.\n    ```python\n    from pytorch_gan_metrics import (get_inception_score,\n                                     get_fid,\n                                     get_inception_score_and_fid)\n    images = ... # [N, 3, H, W]\n    assert 0 <= images.min() and images.max() <= 1\n    # Inception Score\n    IS, IS_std = get_inception_score(\n        images)\n    # Frechet Inception Distance\n    FID = get_fid(\n        images, 'path/to/statistics.npz')\n    # Inception Score & Frechet Inception Distance\n    (IS, IS_std), FID = get_inception_score_and_fid(\n        images, 'path/to/statistics.npz')\n\n    ```\n\n### Using PyTorch DataLoader to Provide Images\n\n- Use `pytorch_gan_metrics.ImageDataset` to collect images on your storage or use your custom `torch.utils.data.Dataset`.\n    ```python\n    from pytorch_gan_metrics import ImageDataset\n\n    dataset = ImageDataset(path_to_dir, exts=['png', 'jpg'])\n    loader = DataLoader(dataset, batch_size=50, num_workers=4)\n    ```\n\n- It is possible to wrap a generative model in a dataset to support generating images on the fly. Remember to set `num_workers=0` to avoid copying models across multiprocess.\n    ```python\n    class GeneratorDataset(Dataset):\n        def __init__(self, G, z_dim):\n            self.G = G\n            self.z_dim = z_dim\n\n        def __len__(self):\n            return 50000\n\n        def __getitem__(self, index):\n            return self.G(torch.randn(1, self.z_dim).cuda())[0]\n\n    dataset = GeneratorDataset(G, z=128)\n    loader = DataLoader(dataset, batch_size=50, num_workers=0)\n    ```\n\n- Calculate metrics\n    ```python\n    from pytorch_gan_metrics import (get_inception_score,\n                                     get_fid,\n                                     get_inception_score_and_fid)\n    # Inception Score\n    IS, IS_std = get_inception_score(\n        loader)\n    # Frechet Inception Distance\n    FID = get_fid(\n        loader, 'path/to/statistics.npz')\n    # Inception Score & Frechet Inception Distance\n    (IS, IS_std), FID = get_inception_score_and_fid(\n        loader, 'path/to/statistics.npz')\n    ```\n\n### Load Images from a Directory\n\n- Calculate metrics for images in a directory and its subfolders.\n    ```python\n    from pytorch_gan_metrics import (\n        get_inception_score_from_directory,\n        get_fid_from_directory,\n        get_inception_score_and_fid_from_directory)\n\n    IS, IS_std = get_inception_score_from_directory(\n        'path/to/images')\n    FID = get_fid_from_directory(\n        'path/to/images', 'path/to/statistics.npz')\n    (IS, IS_std), FID = get_inception_score_and_fid_from_directory(\n        'path/to/images', 'path/to/statistics.npz')\n    ```\n\n### Accelerating Matrix Computation by PyTorch\n\n- Set `use_torch=True` when calling functions `get_*` such as `get_inception_score`, `get_fid`, etc.\n\n- **WARNING** when `use_torch=True` is used, the FID might be `nan` due to the unstable implementation of matrix sqrt.\n\n- This option is recommended to be used when evaluating generative models on a server which is equipped with high efficiency GPUs while the cpu frequency is low.\n\n## Tested Versions\n- `python 3.9 + torch 1.8.2 + CUDA 10.2`\n- `python 3.9 + torch 1.11.0 + CUDA 10.2`\n- `python 3.9 + torch 1.12.1 + CUDA 10.2`\n\n## License\n\nThis implementation is licensed under the Apache License 2.0.\n\nThis implementation is derived from [pytorch-fid](https://github.com/mseitzer/pytorch-fid), licensed under the Apache License 2.0.\n\nFID was introduced by Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler and Sepp Hochreiter in \"GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium\", see [https://arxiv.org/abs/1706.08500](https://arxiv.org/abs/1706.08500)\n\nThe original implementation of FID is by the Institute of Bioinformatics, JKU Linz, licensed under the Apache License 2.0.\nSee [https://github.com/bioinf-jku/TTUR](https://github.com/bioinf-jku/TTUR).\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Package for calculating GAN metrics using Pytorch",
    "version": "0.5.3",
    "project_urls": {
        "Homepage": "https://github.com/w86763777/pytorch-gan-metrics"
    },
    "split_keywords": [
        "pytorch",
        "gan",
        "inception score",
        "is",
        "frechet inception distance",
        "fid"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "02832c65b41b01ec26fcd2aea0943f4e2373759314776b9f0a2db9ee59e459cc",
                "md5": "d7d51087239b0fd1c087718ca9e782d0",
                "sha256": "e70443cf6ec8b6f74acb1a9643c406d2134de771c728ab2b08dc7a137e617b92"
            },
            "downloads": -1,
            "filename": "pytorch_gan_metrics-0.5.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d7d51087239b0fd1c087718ca9e782d0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 18703,
            "upload_time": "2023-09-08T04:45:55",
            "upload_time_iso_8601": "2023-09-08T04:45:55.492440Z",
            "url": "https://files.pythonhosted.org/packages/02/83/2c65b41b01ec26fcd2aea0943f4e2373759314776b9f0a2db9ee59e459cc/pytorch_gan_metrics-0.5.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "561f92ab220f701a35d7c22c595ad2f280913c10d6316249eed4d8cd93fa6c46",
                "md5": "5183263aec8acd80c00dc7224c4ad21e",
                "sha256": "df5a32f57f5b669dfcc8cc008221ebc9022234f3e3a2dd199f66d71756408102"
            },
            "downloads": -1,
            "filename": "pytorch_gan_metrics-0.5.3.tar.gz",
            "has_sig": false,
            "md5_digest": "5183263aec8acd80c00dc7224c4ad21e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 20435,
            "upload_time": "2023-09-08T04:45:57",
            "upload_time_iso_8601": "2023-09-08T04:45:57.476160Z",
            "url": "https://files.pythonhosted.org/packages/56/1f/92ab220f701a35d7c22c595ad2f280913c10d6316249eed4d8cd93fa6c46/pytorch_gan_metrics-0.5.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-08 04:45:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "w86763777",
    "github_project": "pytorch-gan-metrics",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "packaging",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "1.8.2"
                ]
            ]
        },
        {
            "name": "torchvision",
            "specs": [
                [
                    ">=",
                    "0.9.2"
                ]
            ]
        }
    ],
    "tox": true,
    "lcname": "pytorch-gan-metrics"
}
        
Elapsed time: 0.21596s