# PytorchGAN
PytorchGAN
PytorchGAN是一个基于Pytorch框架的生成对抗网络(GAN)实现库。
GAN是一种用于生成模型的机器学习算法,其通过训练生成器和鉴别器来生成新的数据样本。PytorchGAN提供了许多经典的GAN模型实现,如DCGAN,WGAN,CGAN,CycleGAN等。
PytorchGAN的主要优点之一是其使用Pytorch框架。Pytorch是一种动态图形框架,具有易于使用和调试的优点,同时也具有高度灵活性和可扩展性。因此,使用PytorchGAN可以更轻松地构建和训练GAN模型,并且可以利用Pytorch的自动微分功能来优化模型参数。
## Install
```shell
pip install pytorchgan
```
## Usage
```python
from pytorchgan.models import DCGAN
from pytorchgan.models import WGAN
from pytorchgan.models import CGAN
from pytorchgan.models import CycleGAN
```
PytorchGAN是一个基于Pytorch框架的生成对抗网络(GAN)实现库。
GAN是一种用于生成模型的机器学习算法,其通过训练生成器和鉴别器来生成新的数据样本。PytorchGAN提供了许多经典的GAN模型实现,如DCGAN,WGAN,CGAN,CycleGAN等。
PytorchGAN的主要优点之一是其使用Pytorch框架。Pytorch是一种动态图形框架,具有易于使用和调试的优点,同时也具有高度灵活性和可扩展性。因此,使用PytorchGAN可以更轻松地构建和训练GAN模型,并且可以利用Pytorch的自动微分功能来优化模型参数。
## Install
```shell
pip install pytorchgan
```
## Usage
```python
from pytorchgan.models import DCGAN
from pytorchgan.models import WGAN
from pytorchgan.models import CGAN
from pytorchgan.models import CycleGAN
```
PytorchGAN是一个基于Pytorch框架的生成对抗网络(GAN)实现库。
GAN是一种用于生成模型的机器学习算法,其通过训练生成器和鉴别器来生成新的数据样本。PytorchGAN提供了许多经典的GAN模型实现,如DCGAN,WGAN,CGAN,CycleGAN等。
PytorchGAN的主要优点之一是其使用Pytorch框架。Pytorch是一种动态图形框架,具有易于使用和调试的优点,同时也具有高度灵活性和可扩展性。因此,使用PytorchGAN可以更轻松地构建和训练GAN模型,并且可以利用Pytorch的自动微分功能来优化模型参数。
## Install
```shell
pip install pytorchgan
```
## Usage
```python
from pytorchgan.models import DCGAN
from pytorchgan.models import WGAN
from pytorchgan.models import CGAN
from pytorchgan.models import CycleGAN
```
Raw data
{
"_id": null,
"home_page": "https://github.com/xuehangcang/pytorchgan",
"name": "pytorchgan",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "pypi,python,Pytorch,GAN",
"author": "Xuehang Cang",
"author_email": "xuehangcang@outlook.com",
"download_url": "https://files.pythonhosted.org/packages/9f/bc/33790345dd51f8915b477352fa6d4732a5eb110ec3b132d9a8e43e3f1ea0/pytorchgan-0.0.1.tar.gz",
"platform": null,
"description": "\n# PytorchGAN\nPytorchGAN\n\nPytorchGAN\u662f\u4e00\u4e2a\u57fa\u4e8ePytorch\u6846\u67b6\u7684\u751f\u6210\u5bf9\u6297\u7f51\u7edc\uff08GAN\uff09\u5b9e\u73b0\u5e93\u3002\n\nGAN\u662f\u4e00\u79cd\u7528\u4e8e\u751f\u6210\u6a21\u578b\u7684\u673a\u5668\u5b66\u4e60\u7b97\u6cd5\uff0c\u5176\u901a\u8fc7\u8bad\u7ec3\u751f\u6210\u5668\u548c\u9274\u522b\u5668\u6765\u751f\u6210\u65b0\u7684\u6570\u636e\u6837\u672c\u3002PytorchGAN\u63d0\u4f9b\u4e86\u8bb8\u591a\u7ecf\u5178\u7684GAN\u6a21\u578b\u5b9e\u73b0\uff0c\u5982DCGAN\uff0cWGAN\uff0cCGAN\uff0cCycleGAN\u7b49\u3002\n\nPytorchGAN\u7684\u4e3b\u8981\u4f18\u70b9\u4e4b\u4e00\u662f\u5176\u4f7f\u7528Pytorch\u6846\u67b6\u3002Pytorch\u662f\u4e00\u79cd\u52a8\u6001\u56fe\u5f62\u6846\u67b6\uff0c\u5177\u6709\u6613\u4e8e\u4f7f\u7528\u548c\u8c03\u8bd5\u7684\u4f18\u70b9\uff0c\u540c\u65f6\u4e5f\u5177\u6709\u9ad8\u5ea6\u7075\u6d3b\u6027\u548c\u53ef\u6269\u5c55\u6027\u3002\u56e0\u6b64\uff0c\u4f7f\u7528PytorchGAN\u53ef\u4ee5\u66f4\u8f7b\u677e\u5730\u6784\u5efa\u548c\u8bad\u7ec3GAN\u6a21\u578b\uff0c\u5e76\u4e14\u53ef\u4ee5\u5229\u7528Pytorch\u7684\u81ea\u52a8\u5fae\u5206\u529f\u80fd\u6765\u4f18\u5316\u6a21\u578b\u53c2\u6570\u3002\n\n\n## Install\n```shell\npip install pytorchgan\n```\n\n## Usage\n```python\nfrom pytorchgan.models import DCGAN\nfrom pytorchgan.models import WGAN\nfrom pytorchgan.models import CGAN\nfrom pytorchgan.models import CycleGAN\n```\n\nPytorchGAN\u662f\u4e00\u4e2a\u57fa\u4e8ePytorch\u6846\u67b6\u7684\u751f\u6210\u5bf9\u6297\u7f51\u7edc\uff08GAN\uff09\u5b9e\u73b0\u5e93\u3002\n\nGAN\u662f\u4e00\u79cd\u7528\u4e8e\u751f\u6210\u6a21\u578b\u7684\u673a\u5668\u5b66\u4e60\u7b97\u6cd5\uff0c\u5176\u901a\u8fc7\u8bad\u7ec3\u751f\u6210\u5668\u548c\u9274\u522b\u5668\u6765\u751f\u6210\u65b0\u7684\u6570\u636e\u6837\u672c\u3002PytorchGAN\u63d0\u4f9b\u4e86\u8bb8\u591a\u7ecf\u5178\u7684GAN\u6a21\u578b\u5b9e\u73b0\uff0c\u5982DCGAN\uff0cWGAN\uff0cCGAN\uff0cCycleGAN\u7b49\u3002\n\nPytorchGAN\u7684\u4e3b\u8981\u4f18\u70b9\u4e4b\u4e00\u662f\u5176\u4f7f\u7528Pytorch\u6846\u67b6\u3002Pytorch\u662f\u4e00\u79cd\u52a8\u6001\u56fe\u5f62\u6846\u67b6\uff0c\u5177\u6709\u6613\u4e8e\u4f7f\u7528\u548c\u8c03\u8bd5\u7684\u4f18\u70b9\uff0c\u540c\u65f6\u4e5f\u5177\u6709\u9ad8\u5ea6\u7075\u6d3b\u6027\u548c\u53ef\u6269\u5c55\u6027\u3002\u56e0\u6b64\uff0c\u4f7f\u7528PytorchGAN\u53ef\u4ee5\u66f4\u8f7b\u677e\u5730\u6784\u5efa\u548c\u8bad\u7ec3GAN\u6a21\u578b\uff0c\u5e76\u4e14\u53ef\u4ee5\u5229\u7528Pytorch\u7684\u81ea\u52a8\u5fae\u5206\u529f\u80fd\u6765\u4f18\u5316\u6a21\u578b\u53c2\u6570\u3002\n\n\n## Install\n```shell\npip install pytorchgan\n```\n\n## Usage\n```python\nfrom pytorchgan.models import DCGAN\nfrom pytorchgan.models import WGAN\nfrom pytorchgan.models import CGAN\nfrom pytorchgan.models import CycleGAN\n```\n\nPytorchGAN\u662f\u4e00\u4e2a\u57fa\u4e8ePytorch\u6846\u67b6\u7684\u751f\u6210\u5bf9\u6297\u7f51\u7edc\uff08GAN\uff09\u5b9e\u73b0\u5e93\u3002\n\nGAN\u662f\u4e00\u79cd\u7528\u4e8e\u751f\u6210\u6a21\u578b\u7684\u673a\u5668\u5b66\u4e60\u7b97\u6cd5\uff0c\u5176\u901a\u8fc7\u8bad\u7ec3\u751f\u6210\u5668\u548c\u9274\u522b\u5668\u6765\u751f\u6210\u65b0\u7684\u6570\u636e\u6837\u672c\u3002PytorchGAN\u63d0\u4f9b\u4e86\u8bb8\u591a\u7ecf\u5178\u7684GAN\u6a21\u578b\u5b9e\u73b0\uff0c\u5982DCGAN\uff0cWGAN\uff0cCGAN\uff0cCycleGAN\u7b49\u3002\n\nPytorchGAN\u7684\u4e3b\u8981\u4f18\u70b9\u4e4b\u4e00\u662f\u5176\u4f7f\u7528Pytorch\u6846\u67b6\u3002Pytorch\u662f\u4e00\u79cd\u52a8\u6001\u56fe\u5f62\u6846\u67b6\uff0c\u5177\u6709\u6613\u4e8e\u4f7f\u7528\u548c\u8c03\u8bd5\u7684\u4f18\u70b9\uff0c\u540c\u65f6\u4e5f\u5177\u6709\u9ad8\u5ea6\u7075\u6d3b\u6027\u548c\u53ef\u6269\u5c55\u6027\u3002\u56e0\u6b64\uff0c\u4f7f\u7528PytorchGAN\u53ef\u4ee5\u66f4\u8f7b\u677e\u5730\u6784\u5efa\u548c\u8bad\u7ec3GAN\u6a21\u578b\uff0c\u5e76\u4e14\u53ef\u4ee5\u5229\u7528Pytorch\u7684\u81ea\u52a8\u5fae\u5206\u529f\u80fd\u6765\u4f18\u5316\u6a21\u578b\u53c2\u6570\u3002\n\n\n## Install\n```shell\npip install pytorchgan\n```\n\n## Usage\n```python\nfrom pytorchgan.models import DCGAN\nfrom pytorchgan.models import WGAN\nfrom pytorchgan.models import CGAN\nfrom pytorchgan.models import CycleGAN\n```\n",
"bugtrack_url": null,
"license": "",
"summary": "PytorchGAN\u662f\u4e00\u4e2a\u57fa\u4e8ePytorch\u6846\u67b6\u7684\u751f\u6210\u5bf9\u6297\u7f51\u7edc\uff08GAN\uff09\u5b9e\u73b0\u5e93\u3002",
"version": "0.0.1",
"split_keywords": [
"pypi",
"python",
"pytorch",
"gan"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "6cbb2d7ebf076d9ffa4b50179b8565b54269adbd76f84e593ad3008ed98c3a98",
"md5": "075cd48de9a8abbcf4fbf85d0b8435ce",
"sha256": "2b2456db9f5bec1e88f8652b2df7b0f9b13494eb9ba5f0ff2c7dfffff96e5000"
},
"downloads": -1,
"filename": "pytorchgan-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "075cd48de9a8abbcf4fbf85d0b8435ce",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 2925,
"upload_time": "2023-04-26T07:31:06",
"upload_time_iso_8601": "2023-04-26T07:31:06.361192Z",
"url": "https://files.pythonhosted.org/packages/6c/bb/2d7ebf076d9ffa4b50179b8565b54269adbd76f84e593ad3008ed98c3a98/pytorchgan-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9fbc33790345dd51f8915b477352fa6d4732a5eb110ec3b132d9a8e43e3f1ea0",
"md5": "29f07a3eb0d62476d7e0d3d1f8807846",
"sha256": "dd84b1b246643585e5a6d7edacabaf43df71cedb4d7764f431734ea2d8613236"
},
"downloads": -1,
"filename": "pytorchgan-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "29f07a3eb0d62476d7e0d3d1f8807846",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3056,
"upload_time": "2023-04-26T07:31:08",
"upload_time_iso_8601": "2023-04-26T07:31:08.279027Z",
"url": "https://files.pythonhosted.org/packages/9f/bc/33790345dd51f8915b477352fa6d4732a5eb110ec3b132d9a8e43e3f1ea0/pytorchgan-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-04-26 07:31:08",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "xuehangcang",
"github_project": "pytorchgan",
"lcname": "pytorchgan"
}