qgate-sln-mlrun


Nameqgate-sln-mlrun JSON
Version 0.2.7 PyPI version JSON
download
home_pageNone
SummaryThe quality gate for testing MLRun/Iguazio solution.
upload_time2024-08-05 19:52:02
maintainerNone
docs_urlNone
authorNone
requires_python>=3.6
licenseMIT
keywords testing data-science machine-learning quality-assurance quality-assessment iguazio mlrun mlops quality-gate feature-store
VCS
bugtrack_url
requirements mlrun python-dotenv jinja2 scikit-learn redis sqlalchemy cryptography pymysql psycopg2 kafka-python avro
Travis-CI No Travis.
coveralls test coverage
            [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![PyPI version fury.io](https://badge.fury.io/py/qgate-sln-mlrun.svg)](https://pypi.python.org/pypi/qgate-sln-mlrun/)
![coverage](https://github.com/george0st/qgate-sln-mlrun/blob/master/coverage.svg?raw=true)
![GitHub commit activity](https://img.shields.io/github/commit-activity/w/george0st/qgate-sln-mlrun)
![GitHub release](https://img.shields.io/github/v/release/george0st/qgate-sln-mlrun)

# QGate-Sln-MLRun
The Quality Gate for solution [MLRun](https://www.mlrun.org/) (and [Iguazio](https://www.iguazio.com/)). The main aims of the project are:
- independent quality test (function, integration, performance, vulnerability, acceptance, ... tests)
- deeper quality checks before full rollout/use in company environments
- identification of possible compatibility issues (if any)
- external and independent test coverage
- community support
- etc.

The tests use these key components, MLRun solution see **[GIT mlrun](https://github.com/mlrun/mlrun)**, 
sample meta-data model see **[GIT qgate-model](https://github.com/george0st/qgate-model)** and this project.

## Test scenarios
The quality gate covers these test scenarios (✅ done, ✔ in-progress, ❌ planned):
 - **01 - Project**
   - ✅ TS101: Create project(s)
   - ✅ TS102: Delete project(s)
 - **02 - Feature set**
   - ✅ TS201: Create feature set(s)
   - ✅ TS202: Create feature set(s) & Ingest from DataFrame source (one step)
   - ✅ TS203: Create feature set(s) & Ingest from CSV source (one step) 
   - ✅ TS204: Create feature set(s) & Ingest from Parquet source (one step)
   - ✅ TS205: Create feature set(s) & Ingest from SQL source (one step)
   - ✔  TS206: Create feature set(s) & Ingest from Kafka source (one step)
   - ✔  TS207: Create feature set(s) & Ingest from HTTP source (one step)
 - **03 - Ingest data**
   - ✅ TS301: Ingest data (Preview mode)
   - ✅ TS302: Ingest data to feature set(s) from DataFrame source
   - ✅ TS303: Ingest data to feature set(s) from CSV source 
   - ✅ TS304: Ingest data to feature set(s) from Parquet source
   - ✅ TS305: Ingest data to feature set(s) from SQL source
   - ✔  TS306: Ingest data to feature set(s) from Kafka source
   - ✔  TS307: Ingest data to feature set(s) from HTTP source
 - **04 - Ingest data & pipeline**
   - ✅ TS401: Ingest data & pipeline (Preview mode)
   - ✅ TS402: Ingest data & pipeline to feature set(s) from DataFrame source
   - ✅ TS403: Ingest data & pipeline to feature set(s) from CSV source 
   - ✅ TS404: Ingest data & pipeline to feature set(s) from Parquet source
   - ✅ TS405: Ingest data & pipeline to feature set(s) from SQL source
   - ✔  TS406: Ingest data & pipeline to feature set(s) from Kafka source
   - ❌ TS407: Ingest data & pipeline to feature set(s) from HTTP source
 - **05 - Feature vector**
   - ✅ TS501: Create feature vector(s)
 - **06 - Get data from vector**
   - ✅ TS601: Get data from off-line feature vector(s)
   - ✅ TS602: Get data from on-line feature vector(s)
 - **07 - Pipeline**
   - ✅ TS701: Simple pipeline(s)
   - ✅ TS702: Complex pipeline(s)
   - ✅ TS703: Complex pipeline(s), mass operation
 - **08 - Build model**
   - ✅ TS801: Build CART model
   - ❌ TS802: Build XGBoost model
   - ❌ TS803: Build DNN model
 - **09 - Serve model**
   - ✅ TS901: Serving score from CART
   - ❌ TS902: Serving score from XGBoost
   - ❌ TS903: Serving score from DNN
 - **10 - Model monitoring/drifting**
   - ❌ TS1001: Real-time monitoring
   - ❌ TS1002: Batch monitoring
   
NOTE: Each test scenario contains addition specific test cases (e.g. with different
targets for feature sets, etc.).

## Test inputs/outputs
The quality gate tests these inputs/outputs (✅ done, ✔ in-progress, ❌ planned):
 - Outputs (targets)
   - ✅ RedisTarget, ✅ SQLTarget/MySQL, ✔ SQLTarget/Postgres, ✅ KafkaTarget
   - ✅ ParquetTarget, ✅ CSVTarget
   - ✅ File system, ❌ S3, ❌ BlobStorage
 - Inputs (sources)
   - ✅ Pandas/DataFrame, ✅ SQLSource/MySQL, ❌ SQLSource/Postgres, ❌ KafkaSource
   - ✅ ParquetSource, ✅ CSVSource
   - ✅ File system, ❌ S3, ❌ BlobStorage


The current supported [sources/targets in MLRun](https://docs.mlrun.org/en/latest/feature-store/sources-targets.html).

## Sample of outputs

![Sample of outputs](https://github.com/george0st/qgate-sln-mlrun/blob/master/assets/imgs/qgt-mlrun-samples.png?raw=true)

The PART reports in original form, see:
 - all DONE - [HTML](https://htmlpreview.github.io/?https://github.com/george0st/qgate-sln-mlrun/blob/master/docs/samples/outputs/qgt-mlrun-sample.html), [TXT](https://github.com/george0st/qgate-sln-mlrun/blob/master/docs/samples/outputs/qgt-mlrun-sample.txt?raw=true)
 - with ERRors - [HTML](https://htmlpreview.github.io/?https://github.com/george0st/qgate-sln-mlrun/blob/master/docs/samples/outputs/qgt-mlrun-sample-err.html), [TXT](https://github.com/george0st/qgate-sln-mlrun/blob/master/docs/samples/outputs/qgt-mlrun-sample-err.txt?raw=true)

## Usage

You can easy use this solution in four steps:
1. Download content of these two GIT repositories to your local environment
    - [qgate-sln-mlrun](https://github.com/george0st/qgate-sln-mlrun)
    - [qgate-model](https://github.com/george0st/qgate-model)
2. Update file `qgate-sln-mlrun.env` from qgate-model
   - Update variables for MLRun/Iguazio, see `MLRUN_DBPATH`, `V3IO_USERNAME`, `V3IO_ACCESS_KEY`, `V3IO_API`
     - setting of `V3IO_*` is needed only in case of Iguazio installation (not for pure free MLRun)
   - Update variables for QGate, see `QGATE_*` (basic description directly in *.env)
     - detail setup [configuration](./docs/configuration.md)
3. Run from `qgate-sln-mlrun`
   - **python main.py**
4. See outputs (location is based on `QGATE_OUTPUT` in configuration)
   - './output/qgt-mlrun-<date> <sequence>.html'
   - './output/qgt-mlrun-<date> <sequence>.txt'

Precondition: You have available MLRun or Iguazio solution (MLRun is part of that),
see official [installation steps](https://docs.mlrun.org/en/latest/install.html), or directly installation for [Desktop Docker](https://docs.mlrun.org/en/latest/install/local-docker.html). 

## Tested with
The project was tested with these MLRun versions (see [change log](https://docs.mlrun.org/en/latest/change-log/index.html)):
 - **MLRun** (in Desktop Docker)
   - MLRun 1.7.0 (plan 08/2024)
   - MLRun 1.6.4, 1.6.3, 1.6.2, 1.6.1, 1.6.0
   - MLRun 1.5.2, 1.5.1, 1.5.0
   - MLRun 1.4.1
   - MLRun 1.3.0
 - **Iguazio** (k8s, on-prem, VM on VMware)
   - Iguazio 3.5.3 (with MLRun 1.4.1)
   - Iguazio 3.5.1 (with MLRun 1.3.0)

NOTE: Current state, only the last MLRun/Iguazio versions are tested 
(the backward compatibility is based on MLRun/Iguazio, [see](https://docs.mlrun.org/en/latest/install.html#mlrun-client-backward-compatibility)).

## Others
 - **To-Do**, the list of expected/future improvements, [see](./docs/todo_list.md)
 - **Applied limits**, the list of applied limits/issues, [see](./docs/applied-limits.md) 
 - **How can you test the solution?**, you have to focus on Linux env. or 
 Windows with WSL2 ([see](./docs/testing.md) step by step tutorial)
 - **MLRun/Iguazio**, the key changes in a nutshell (customer view), [see](./docs/mlrun-iguazio-release-notes.md)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "qgate-sln-mlrun",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "Jiri Steuer <steuer.jiri@gmail.com>",
    "keywords": "testing, data-science, machine-learning, quality-assurance, quality-assessment, iguazio, mlrun, mlops, quality-gate, feature-store",
    "author": null,
    "author_email": "Jiri Steuer <steuer.jiri@gmail.com>",
    "download_url": null,
    "platform": null,
    "description": "[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)\r\n[![PyPI version fury.io](https://badge.fury.io/py/qgate-sln-mlrun.svg)](https://pypi.python.org/pypi/qgate-sln-mlrun/)\r\n![coverage](https://github.com/george0st/qgate-sln-mlrun/blob/master/coverage.svg?raw=true)\r\n![GitHub commit activity](https://img.shields.io/github/commit-activity/w/george0st/qgate-sln-mlrun)\r\n![GitHub release](https://img.shields.io/github/v/release/george0st/qgate-sln-mlrun)\r\n\r\n# QGate-Sln-MLRun\r\nThe Quality Gate for solution [MLRun](https://www.mlrun.org/) (and [Iguazio](https://www.iguazio.com/)). The main aims of the project are:\r\n- independent quality test (function, integration, performance, vulnerability, acceptance, ... tests)\r\n- deeper quality checks before full rollout/use in company environments\r\n- identification of possible compatibility issues (if any)\r\n- external and independent test coverage\r\n- community support\r\n- etc.\r\n\r\nThe tests use these key components, MLRun solution see **[GIT mlrun](https://github.com/mlrun/mlrun)**, \r\nsample meta-data model see **[GIT qgate-model](https://github.com/george0st/qgate-model)** and this project.\r\n\r\n## Test scenarios\r\nThe quality gate covers these test scenarios (\u2705 done, \u2714 in-progress, \u274c planned):\r\n - **01 - Project**\r\n   - \u2705 TS101: Create project(s)\r\n   - \u2705 TS102: Delete project(s)\r\n - **02 - Feature set**\r\n   - \u2705 TS201: Create feature set(s)\r\n   - \u2705 TS202: Create feature set(s) & Ingest from DataFrame source (one step)\r\n   - \u2705 TS203: Create feature set(s) & Ingest from CSV source (one step) \r\n   - \u2705 TS204: Create feature set(s) & Ingest from Parquet source (one step)\r\n   - \u2705 TS205: Create feature set(s) & Ingest from SQL source (one step)\r\n   - \u2714  TS206: Create feature set(s) & Ingest from Kafka source (one step)\r\n   - \u2714  TS207: Create feature set(s) & Ingest from HTTP source (one step)\r\n - **03 - Ingest data**\r\n   - \u2705 TS301: Ingest data (Preview mode)\r\n   - \u2705 TS302: Ingest data to feature set(s) from DataFrame source\r\n   - \u2705 TS303: Ingest data to feature set(s) from CSV source \r\n   - \u2705 TS304: Ingest data to feature set(s) from Parquet source\r\n   - \u2705 TS305: Ingest data to feature set(s) from SQL source\r\n   - \u2714  TS306: Ingest data to feature set(s) from Kafka source\r\n   - \u2714  TS307: Ingest data to feature set(s) from HTTP source\r\n - **04 - Ingest data & pipeline**\r\n   - \u2705 TS401: Ingest data & pipeline (Preview mode)\r\n   - \u2705 TS402: Ingest data & pipeline to feature set(s) from DataFrame source\r\n   - \u2705 TS403: Ingest data & pipeline to feature set(s) from CSV source \r\n   - \u2705 TS404: Ingest data & pipeline to feature set(s) from Parquet source\r\n   - \u2705 TS405: Ingest data & pipeline to feature set(s) from SQL source\r\n   - \u2714  TS406: Ingest data & pipeline to feature set(s) from Kafka source\r\n   - \u274c TS407: Ingest data & pipeline to feature set(s) from HTTP source\r\n - **05 - Feature vector**\r\n   - \u2705 TS501: Create feature vector(s)\r\n - **06 - Get data from vector**\r\n   - \u2705 TS601: Get data from off-line feature vector(s)\r\n   - \u2705 TS602: Get data from on-line feature vector(s)\r\n - **07 - Pipeline**\r\n   - \u2705 TS701: Simple pipeline(s)\r\n   - \u2705 TS702: Complex pipeline(s)\r\n   - \u2705 TS703: Complex pipeline(s), mass operation\r\n - **08 - Build model**\r\n   - \u2705 TS801: Build CART model\r\n   - \u274c TS802: Build XGBoost model\r\n   - \u274c TS803: Build DNN model\r\n - **09 - Serve model**\r\n   - \u2705 TS901: Serving score from CART\r\n   - \u274c TS902: Serving score from XGBoost\r\n   - \u274c TS903: Serving score from DNN\r\n - **10 - Model monitoring/drifting**\r\n   - \u274c TS1001: Real-time monitoring\r\n   - \u274c TS1002: Batch monitoring\r\n   \r\nNOTE: Each test scenario contains addition specific test cases (e.g. with different\r\ntargets for feature sets, etc.).\r\n\r\n## Test inputs/outputs\r\nThe quality gate tests these inputs/outputs (\u2705 done, \u2714 in-progress, \u274c planned):\r\n - Outputs (targets)\r\n   - \u2705 RedisTarget, \u2705 SQLTarget/MySQL, \u2714 SQLTarget/Postgres, \u2705 KafkaTarget\r\n   - \u2705 ParquetTarget, \u2705 CSVTarget\r\n   - \u2705 File system, \u274c S3, \u274c BlobStorage\r\n - Inputs (sources)\r\n   - \u2705 Pandas/DataFrame, \u2705 SQLSource/MySQL, \u274c SQLSource/Postgres, \u274c KafkaSource\r\n   - \u2705 ParquetSource, \u2705 CSVSource\r\n   - \u2705 File system, \u274c S3, \u274c BlobStorage\r\n\r\n\r\nThe current supported [sources/targets in MLRun](https://docs.mlrun.org/en/latest/feature-store/sources-targets.html).\r\n\r\n## Sample of outputs\r\n\r\n![Sample of outputs](https://github.com/george0st/qgate-sln-mlrun/blob/master/assets/imgs/qgt-mlrun-samples.png?raw=true)\r\n\r\nThe PART reports in original form, see:\r\n - all DONE - [HTML](https://htmlpreview.github.io/?https://github.com/george0st/qgate-sln-mlrun/blob/master/docs/samples/outputs/qgt-mlrun-sample.html), [TXT](https://github.com/george0st/qgate-sln-mlrun/blob/master/docs/samples/outputs/qgt-mlrun-sample.txt?raw=true)\r\n - with ERRors - [HTML](https://htmlpreview.github.io/?https://github.com/george0st/qgate-sln-mlrun/blob/master/docs/samples/outputs/qgt-mlrun-sample-err.html), [TXT](https://github.com/george0st/qgate-sln-mlrun/blob/master/docs/samples/outputs/qgt-mlrun-sample-err.txt?raw=true)\r\n\r\n## Usage\r\n\r\nYou can easy use this solution in four steps:\r\n1. Download content of these two GIT repositories to your local environment\r\n    - [qgate-sln-mlrun](https://github.com/george0st/qgate-sln-mlrun)\r\n    - [qgate-model](https://github.com/george0st/qgate-model)\r\n2. Update file `qgate-sln-mlrun.env` from qgate-model\r\n   - Update variables for MLRun/Iguazio, see `MLRUN_DBPATH`, `V3IO_USERNAME`, `V3IO_ACCESS_KEY`, `V3IO_API`\r\n     - setting of `V3IO_*` is needed only in case of Iguazio installation (not for pure free MLRun)\r\n   - Update variables for QGate, see `QGATE_*` (basic description directly in *.env)\r\n     - detail setup [configuration](./docs/configuration.md)\r\n3. Run from `qgate-sln-mlrun`\r\n   - **python main.py**\r\n4. See outputs (location is based on `QGATE_OUTPUT` in configuration)\r\n   - './output/qgt-mlrun-<date> <sequence>.html'\r\n   - './output/qgt-mlrun-<date> <sequence>.txt'\r\n\r\nPrecondition: You have available MLRun or Iguazio solution (MLRun is part of that),\r\nsee official [installation steps](https://docs.mlrun.org/en/latest/install.html), or directly installation for [Desktop Docker](https://docs.mlrun.org/en/latest/install/local-docker.html). \r\n\r\n## Tested with\r\nThe project was tested with these MLRun versions (see [change log](https://docs.mlrun.org/en/latest/change-log/index.html)):\r\n - **MLRun** (in Desktop Docker)\r\n   - MLRun 1.7.0 (plan 08/2024)\r\n   - MLRun 1.6.4, 1.6.3, 1.6.2, 1.6.1, 1.6.0\r\n   - MLRun 1.5.2, 1.5.1, 1.5.0\r\n   - MLRun 1.4.1\r\n   - MLRun 1.3.0\r\n - **Iguazio** (k8s, on-prem, VM on VMware)\r\n   - Iguazio 3.5.3 (with MLRun 1.4.1)\r\n   - Iguazio 3.5.1 (with MLRun 1.3.0)\r\n\r\nNOTE: Current state, only the last MLRun/Iguazio versions are tested \r\n(the backward compatibility is based on MLRun/Iguazio, [see](https://docs.mlrun.org/en/latest/install.html#mlrun-client-backward-compatibility)).\r\n\r\n## Others\r\n - **To-Do**, the list of expected/future improvements, [see](./docs/todo_list.md)\r\n - **Applied limits**, the list of applied limits/issues, [see](./docs/applied-limits.md) \r\n - **How can you test the solution?**, you have to focus on Linux env. or \r\n Windows with WSL2 ([see](./docs/testing.md) step by step tutorial)\r\n - **MLRun/Iguazio**, the key changes in a nutshell (customer view), [see](./docs/mlrun-iguazio-release-notes.md)\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "The quality gate for testing MLRun/Iguazio solution.",
    "version": "0.2.7",
    "project_urls": {
        "homepage": "https://github.com/george0st/qgate-sln-mlrun/",
        "repository": "https://pypi.org/project/qgate-sln-mlrun/"
    },
    "split_keywords": [
        "testing",
        " data-science",
        " machine-learning",
        " quality-assurance",
        " quality-assessment",
        " iguazio",
        " mlrun",
        " mlops",
        " quality-gate",
        " feature-store"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f565921f2fffe3b72e7f554265af9bf134f65e895dfd975584a383edf9bf85bb",
                "md5": "f25af04f2c750fbdb5a9be243e8c26f0",
                "sha256": "9141097d0bf64f1b7abc2e046e0a7e2bd34bab6b5efa20b887e00b8563ff4a9b"
            },
            "downloads": -1,
            "filename": "qgate_sln_mlrun-0.2.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f25af04f2c750fbdb5a9be243e8c26f0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 69182,
            "upload_time": "2024-08-05T19:52:02",
            "upload_time_iso_8601": "2024-08-05T19:52:02.373798Z",
            "url": "https://files.pythonhosted.org/packages/f5/65/921f2fffe3b72e7f554265af9bf134f65e895dfd975584a383edf9bf85bb/qgate_sln_mlrun-0.2.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-05 19:52:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "george0st",
    "github_project": "qgate-sln-mlrun",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": false,
    "requirements": [
        {
            "name": "mlrun",
            "specs": [
                [
                    "==",
                    "1.6.4"
                ]
            ]
        },
        {
            "name": "python-dotenv",
            "specs": [
                [
                    "~=",
                    "0.17.0"
                ]
            ]
        },
        {
            "name": "jinja2",
            "specs": [
                [
                    "~=",
                    "3.1"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    "==",
                    "1.5.0"
                ]
            ]
        },
        {
            "name": "redis",
            "specs": [
                [
                    "~=",
                    "5.0"
                ]
            ]
        },
        {
            "name": "sqlalchemy",
            "specs": [
                [
                    "~=",
                    "1.4"
                ]
            ]
        },
        {
            "name": "cryptography",
            "specs": [
                [
                    "~=",
                    "42.0"
                ]
            ]
        },
        {
            "name": "pymysql",
            "specs": [
                [
                    "~=",
                    "1.1"
                ]
            ]
        },
        {
            "name": "psycopg2",
            "specs": [
                [
                    "~=",
                    "2.9"
                ]
            ]
        },
        {
            "name": "kafka-python",
            "specs": [
                [
                    "~=",
                    "2.0"
                ]
            ]
        },
        {
            "name": "avro",
            "specs": [
                [
                    "~=",
                    "1.11"
                ]
            ]
        }
    ],
    "lcname": "qgate-sln-mlrun"
}
        
Elapsed time: 0.27923s