# QuDiDA (QUick and DIrty Domain Adaptation)
QuDiDA is a micro library for very naive though quick pixel level image domain adaptation via `scikit-learn` transformers.
Is assumed to be used as image augmentation technique, while was not tested in public benchmarks.
## Installation
```
pip install qudida
```
or
```
pip install git+https://github.com/arsenyinfo/qudida
```
## Usage
```
import cv2
from sklearn.decomposition import PCA
from qudida import DomainAdapter
adapter = DomainAdapter(transformer=PCA(n_components=1), ref_img=cv2.imread('target.png'))
source = cv2.imread('source.png')
result = adapter(source)
cv2.imwrite('../result.png', result)
```
## Example
Source image:
![source](source.png)
Target image (style donor):
![target](target.png)
Result with various adaptations:
![result](result.gif)
Raw data
{
"_id": null,
"home_page": "https://github.com/arsenyinfo/qudida",
"name": "qudida",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.5.0",
"maintainer_email": "",
"keywords": "Machine Learning,Computer Vision",
"author": "",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/3e/2d/bab8babd9dc9a9e4df6eb115540cee4322c1a74078fb6f3b3ebc452a22b3/qudida-0.0.4.tar.gz",
"platform": "",
"description": "\n# QuDiDA (QUick and DIrty Domain Adaptation)\n\nQuDiDA is a micro library for very naive though quick pixel level image domain adaptation via `scikit-learn` transformers.\nIs assumed to be used as image augmentation technique, while was not tested in public benchmarks. \n\n## Installation\n```\npip install qudida\n```\nor\n```\npip install git+https://github.com/arsenyinfo/qudida\n```\n\n## Usage \n```\nimport cv2\n\nfrom sklearn.decomposition import PCA\nfrom qudida import DomainAdapter\n\nadapter = DomainAdapter(transformer=PCA(n_components=1), ref_img=cv2.imread('target.png'))\nsource = cv2.imread('source.png')\nresult = adapter(source)\ncv2.imwrite('../result.png', result)\n```\n\n## Example \nSource image: \n![source](source.png)\nTarget image (style donor):\n![target](target.png)\nResult with various adaptations:\n![result](result.gif)\n\n\n",
"bugtrack_url": null,
"license": "",
"summary": "QUick and DIrty Domain Adaptation",
"version": "0.0.4",
"split_keywords": [
"machine learning",
"computer vision"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "a610fdb6ffb429edecde1ab8bfddd921",
"sha256": "4519714c40cd0f2e6c51e1735edae8f8b19f4efe1f33be13e9d644ca5f736dd6"
},
"downloads": -1,
"filename": "qudida-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a610fdb6ffb429edecde1ab8bfddd921",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.5.0",
"size": 3478,
"upload_time": "2021-08-09T16:47:54",
"upload_time_iso_8601": "2021-08-09T16:47:54.637858Z",
"url": "https://files.pythonhosted.org/packages/f0/a1/a5f4bebaa31d109003909809d88aeb0d4b201463a9ea29308d9e4f9e7655/qudida-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "d0a9ba65f9a1537b92400a22685a23a0",
"sha256": "db198e2887ab0c9aa0023e565afbff41dfb76b361f85fd5e13f780d75ba18cc8"
},
"downloads": -1,
"filename": "qudida-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "d0a9ba65f9a1537b92400a22685a23a0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.5.0",
"size": 3100,
"upload_time": "2021-08-09T16:47:55",
"upload_time_iso_8601": "2021-08-09T16:47:55.807682Z",
"url": "https://files.pythonhosted.org/packages/3e/2d/bab8babd9dc9a9e4df6eb115540cee4322c1a74078fb6f3b3ebc452a22b3/qudida-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2021-08-09 16:47:55",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "arsenyinfo",
"github_project": "qudida",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "opencv-python",
"specs": [
[
">=",
"4.0.1"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"0.18.0"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
">=",
"0.19.1"
]
]
},
{
"name": "typing-extensions",
"specs": []
}
],
"lcname": "qudida"
}