quick-trade


Namequick-trade JSON
Version 8.0.0 PyPI version JSON
download
home_pageNone
SummaryLibrary for easy management and customization of algorithmic trading.
upload_time2024-12-06 00:52:36
maintainerNone
docs_urlNone
authorVlad Kochetov
requires_python>=3.6
licensecc-by-sa-4.0
keywords technical-analysis python3 trading trading-bot trading binance-trading ccxt
VCS
bugtrack_url
requirements numpy plotly pandas ta ccxt tqdm scikit-learn
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # quick_trade
[![stand-with-Ukraine](https://raw.githubusercontent.com/vshymanskyy/StandWithUkraine/main/banner2-direct.svg)](https://vshymanskyy.github.io/StandWithUkraine)
[![Downloads](https://static.pepy.tech/personalized-badge/quick-trade?period=total&units=none&left_color=grey&right_color=brightgreen&left_text=PyPi%20downloads)](https://pepy.tech/project/quick-trade)
[![Downloads](https://static.pepy.tech/personalized-badge/quick-trade?period=month&units=none&left_color=grey&right_color=brightgreen&left_text=PyPi%20downloads%20(month))](https://pepy.tech/project/quick-trade)

![image](https://github.com/quick-trade/quick_trade/blob/main/img/logo_with_slogan.PNG?raw=true)


```
Dependencies:
 ├──ta (Bukosabino   https://github.com/bukosabino/ta (by Darío López Padial))
 ├──plotly (https://github.com/plotly/plotly.py)
 ├──pandas (https://github.com/pandas-dev/pandas)
 ├──numpy (https://github.com/numpy/numpy)
 ├──tqdm (https://github.com/tqdm/tqdm)
 ├──scikit-learn (https://github.com/scikit-learn/scikit-learn)
 └──ccxt (https://github.com/ccxt/ccxt)
```
* **Documentation:** 🚧 https://quick-trade.github.io/quick_trade/#/ 🚧
* **Twitter:** [@quick_trade_tw](https://twitter.com/quick_trade_tw)
* **Discord**: [quick_trade](https://discord.gg/SkRg9mzuB5)

## Installation:

Quick install:

```commandline
$ pip3 install quick-trade
```

For development:

```commandline
$ git clone https://github.com/quick-trade/quick_trade.git
$ pip3 install -r quick_trade/requirements.txt
$ cd quick_trade
$ python3 setup.py install
$ cd ..
```

## Customize your strategy!

```python
from quick_trade.plots import TraderGraph, make_trader_figure
import ccxt
from quick_trade import strategy, TradingClient, Trader
from quick_trade.utils import TradeSide


class MyTrader(qtr.Trader):
    @strategy
    def strategy_sell_and_hold(self):
        ret = []
        for i in self.df['Close'].values:
            ret.append(TradeSide.SELL)
        self.returns = ret
        self.set_credit_leverages(2)  # if you want to use a leverage
        self.set_open_stop_and_take(stop)
        # or... set a stop loss with only one line of code
        return ret


client = TradingClient(ccxt.binance())
df = client.get_data_historical("BTC/USDT")
trader = MyTrader("BTC/USDT", df=df)
trader.connect_graph(TraderGraph(make_trader_figure()))
trader.set_client(client)
trader.strategy_sell_and_hold()
trader.backtest()
```

## Find the best strategy!

```python
import quick_trade as qtr
import ccxt
from quick_trade.tuner import *
from quick_trade import TradingClient


class Test(qtr.ExampleStrategies):
    @strategy
    def strategy_supertrend1(self, plot: bool = False, *st_args, **st_kwargs):
        self.strategy_supertrend(plot=plot, *st_args, **st_kwargs)
        self.convert_signal()  # only long trades
        return self.returns

    @strategy
    def macd(self, histogram=False, **kwargs):
        if not histogram:
            self.strategy_macd(**kwargs)
        else:
            self.strategy_macd_histogram_diff(**kwargs)
        self.convert_signal()
        return self.returns

    @strategy
    def psar(self, **kwargs):
        self.strategy_parabolic_SAR(plot=False, **kwargs)
        self.convert_signal()
        return self.returns


params = {
    'strategy_supertrend1':
        [
            {
                'multiplier': Linspace(0.5, 22, 5)
            }
        ],
    'macd':
        [
            {
                'slow': Linspace(10, 100, 3),
                'fast': Linspace(3, 60, 3),
                'histogram': Choise([False, True])
            }
        ],
    'psar':
        [
            {
                'step': 0.01,
                'max_step': 0.1
            },
            {
                'step': 0.02,
                'max_step': 0.2
            }
        ]

}

tuner = QuickTradeTuner(
    TradingClient(ccxt.binance()),
    ['BTC/USDT', 'OMG/USDT', 'XRP/USDT'],
    ['15m', '5m'],
    [1000, 700, 800, 500],
    params
)

tuner.tune(Test)
print(tuner.sort_tunes())
tuner.save_tunes('quick-trade-tunes.json')  # save tunes as JSON

```

You can also set rules for arranging arguments for each strategy by using `_RULES_` and `kwargs` to access the values of the arguments:

```python
params = {
    'strategy_3_sma':
        [
            dict(
                plot=False,
                slow=Choise([2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597]),
                fast=Choise([2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597]),
                mid=Choise([2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597]),
                _RULES_='kwargs["slow"] > kwargs["mid"] > kwargs["fast"]'
            )
        ],
}
```

## User's code example (backtest)

```python
from quick_trade import brokers
from quick_trade import trading_sys as qtr
from quick_trade.plots import *
import ccxt
from numpy import inf


client = brokers.TradingClient(ccxt.binance())
df = client.get_data_historical('BTC/USDT', '15m', 1000)
trader = qtr.ExampleStrategies('BTC/USDT', df=df, interval='15m')
trader.set_client(client)
trader.connect_graph(TraderGraph(make_trader_figure(height=731, width=1440, row_heights=[10, 5, 2])))
trader.strategy_2_sma(55, 21)
trader.backtest(deposit=1000, commission=0.075, bet=inf)  # backtest on one pair
```

## Output plotly chart:

![image](https://raw.githubusercontent.com/quick-trade/quick_trade/main/img/plot.png)

## Output print

```commandline
losses: 12
trades: 20
profits: 8
mean year percentage profit: 215.1878652911773%
winrate: 40.0%
mean deviation: 2.917382949881604%
Sharpe ratio: 0.02203412259055281
Sortino ratio: 0.02774402450236864
calmar ratio: 21.321078596349782
max drawdown: 10.092728860725552%
```

## Run strategy

Use the strategy on real moneys. YES, IT'S FULLY AUTOMATED!

```python
import datetime
from quick_trade.trading_sys import ExampleStrategies
from quick_trade.brokers import TradingClient
from quick_trade.plots import TraderGraph, make_figure
import ccxt

ticker = 'MATIC/USDT'

start_time = datetime.datetime(2021,  # year
                               6,  # month
                               24,  # day

                               5,  # hour
                               16,  # minute
                               57)  # second (Leave a few seconds to download data from the exchange)


class MyTrade(ExampleStrategies):
    @strategy
    def strategy(self):
        self.strategy_supertrend(multiplier=2, length=1, plot=False)
        self.convert_signal()
        self.set_credit_leverages(1)
        self.sl_tp_adder(10)
        return self.returns


keys = {'apiKey': 'your api key',
        'secret': 'your secret key'}
client = TradingClient(ccxt.binance(config=keys))  # or any other exchange

trader = MyTrade(ticker=ticker,
                 interval='1m',
                 df=client.get_data_historical(ticker, limit=10))
fig = make_trader_figure()
graph = TraderGraph(figure=fig)
trader.connect_graph(graph)
trader.set_client(client)

trader.realtime_trading(
    strategy=trader.strategy,
    start_time=start_time,
    ticker=ticker,
    limit=100,
    wait_sl_tp_checking=5
)

```

![image](https://github.com/quick-trade/quick_trade/blob/main/img/realtime_example.png?raw=true)

## Additional Resources

Old documentation (V3 doc): https://vladkochetov007.github.io/quick_trade.github.io

# License

<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br /><span xmlns:dct="http://purl.org/dc/terms/" property="dct:title">quick_trade</span> by <a xmlns:cc="http://creativecommons.org/ns#" href="https://github.com/VladKochetov007" property="cc:attributionName" rel="cc:attributionURL">Vladyslav Kochetov</a> is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.<br />Permissions beyond the scope of this license may be available at <a xmlns:cc="http://creativecommons.org/ns#" href="vladyslavdrrragonkoch@gmail.com" rel="cc:morePermissions">vladyslavdrrragonkoch@gmail.com</a>.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "quick-trade",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "technical-analysis, python3, trading, trading-bot, trading, binance-trading, ccxt",
    "author": "Vlad Kochetov",
    "author_email": "vladyslavdrrragonkoch@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/68/9d/b81d5f8e005ed9e6a22b000b5c2b8b04a905f173fe41e30c866fd8947ff8/quick_trade-8.0.0.tar.gz",
    "platform": null,
    "description": "# quick_trade\n[![stand-with-Ukraine](https://raw.githubusercontent.com/vshymanskyy/StandWithUkraine/main/banner2-direct.svg)](https://vshymanskyy.github.io/StandWithUkraine)\n[![Downloads](https://static.pepy.tech/personalized-badge/quick-trade?period=total&units=none&left_color=grey&right_color=brightgreen&left_text=PyPi%20downloads)](https://pepy.tech/project/quick-trade)\n[![Downloads](https://static.pepy.tech/personalized-badge/quick-trade?period=month&units=none&left_color=grey&right_color=brightgreen&left_text=PyPi%20downloads%20(month))](https://pepy.tech/project/quick-trade)\n\n![image](https://github.com/quick-trade/quick_trade/blob/main/img/logo_with_slogan.PNG?raw=true)\n\n\n```\nDependencies:\n \u251c\u2500\u2500ta (Bukosabino   https://github.com/bukosabino/ta (by Dar\u00edo L\u00f3pez Padial))\n \u251c\u2500\u2500plotly (https://github.com/plotly/plotly.py)\n \u251c\u2500\u2500pandas (https://github.com/pandas-dev/pandas)\n \u251c\u2500\u2500numpy (https://github.com/numpy/numpy)\n \u251c\u2500\u2500tqdm (https://github.com/tqdm/tqdm)\n \u251c\u2500\u2500scikit-learn (https://github.com/scikit-learn/scikit-learn)\n \u2514\u2500\u2500ccxt (https://github.com/ccxt/ccxt)\n```\n* **Documentation:** \ud83d\udea7 https://quick-trade.github.io/quick_trade/#/ \ud83d\udea7\n* **Twitter:** [@quick_trade_tw](https://twitter.com/quick_trade_tw)\n* **Discord**: [quick_trade](https://discord.gg/SkRg9mzuB5)\n\n## Installation:\n\nQuick install:\n\n```commandline\n$ pip3 install quick-trade\n```\n\nFor development:\n\n```commandline\n$ git clone https://github.com/quick-trade/quick_trade.git\n$ pip3 install -r quick_trade/requirements.txt\n$ cd quick_trade\n$ python3 setup.py install\n$ cd ..\n```\n\n## Customize your strategy!\n\n```python\nfrom quick_trade.plots import TraderGraph, make_trader_figure\nimport ccxt\nfrom quick_trade import strategy, TradingClient, Trader\nfrom quick_trade.utils import TradeSide\n\n\nclass MyTrader(qtr.Trader):\n    @strategy\n    def strategy_sell_and_hold(self):\n        ret = []\n        for i in self.df['Close'].values:\n            ret.append(TradeSide.SELL)\n        self.returns = ret\n        self.set_credit_leverages(2)  # if you want to use a leverage\n        self.set_open_stop_and_take(stop)\n        # or... set a stop loss with only one line of code\n        return ret\n\n\nclient = TradingClient(ccxt.binance())\ndf = client.get_data_historical(\"BTC/USDT\")\ntrader = MyTrader(\"BTC/USDT\", df=df)\ntrader.connect_graph(TraderGraph(make_trader_figure()))\ntrader.set_client(client)\ntrader.strategy_sell_and_hold()\ntrader.backtest()\n```\n\n## Find the best strategy!\n\n```python\nimport quick_trade as qtr\nimport ccxt\nfrom quick_trade.tuner import *\nfrom quick_trade import TradingClient\n\n\nclass Test(qtr.ExampleStrategies):\n    @strategy\n    def strategy_supertrend1(self, plot: bool = False, *st_args, **st_kwargs):\n        self.strategy_supertrend(plot=plot, *st_args, **st_kwargs)\n        self.convert_signal()  # only long trades\n        return self.returns\n\n    @strategy\n    def macd(self, histogram=False, **kwargs):\n        if not histogram:\n            self.strategy_macd(**kwargs)\n        else:\n            self.strategy_macd_histogram_diff(**kwargs)\n        self.convert_signal()\n        return self.returns\n\n    @strategy\n    def psar(self, **kwargs):\n        self.strategy_parabolic_SAR(plot=False, **kwargs)\n        self.convert_signal()\n        return self.returns\n\n\nparams = {\n    'strategy_supertrend1':\n        [\n            {\n                'multiplier': Linspace(0.5, 22, 5)\n            }\n        ],\n    'macd':\n        [\n            {\n                'slow': Linspace(10, 100, 3),\n                'fast': Linspace(3, 60, 3),\n                'histogram': Choise([False, True])\n            }\n        ],\n    'psar':\n        [\n            {\n                'step': 0.01,\n                'max_step': 0.1\n            },\n            {\n                'step': 0.02,\n                'max_step': 0.2\n            }\n        ]\n\n}\n\ntuner = QuickTradeTuner(\n    TradingClient(ccxt.binance()),\n    ['BTC/USDT', 'OMG/USDT', 'XRP/USDT'],\n    ['15m', '5m'],\n    [1000, 700, 800, 500],\n    params\n)\n\ntuner.tune(Test)\nprint(tuner.sort_tunes())\ntuner.save_tunes('quick-trade-tunes.json')  # save tunes as JSON\n\n```\n\nYou can also set rules for arranging arguments for each strategy by using `_RULES_` and `kwargs` to access the values of the arguments:\n\n```python\nparams = {\n    'strategy_3_sma':\n        [\n            dict(\n                plot=False,\n                slow=Choise([2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597]),\n                fast=Choise([2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597]),\n                mid=Choise([2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597]),\n                _RULES_='kwargs[\"slow\"] > kwargs[\"mid\"] > kwargs[\"fast\"]'\n            )\n        ],\n}\n```\n\n## User's code example (backtest)\n\n```python\nfrom quick_trade import brokers\nfrom quick_trade import trading_sys as qtr\nfrom quick_trade.plots import *\nimport ccxt\nfrom numpy import inf\n\n\nclient = brokers.TradingClient(ccxt.binance())\ndf = client.get_data_historical('BTC/USDT', '15m', 1000)\ntrader = qtr.ExampleStrategies('BTC/USDT', df=df, interval='15m')\ntrader.set_client(client)\ntrader.connect_graph(TraderGraph(make_trader_figure(height=731, width=1440, row_heights=[10, 5, 2])))\ntrader.strategy_2_sma(55, 21)\ntrader.backtest(deposit=1000, commission=0.075, bet=inf)  # backtest on one pair\n```\n\n## Output plotly chart:\n\n![image](https://raw.githubusercontent.com/quick-trade/quick_trade/main/img/plot.png)\n\n## Output print\n\n```commandline\nlosses: 12\ntrades: 20\nprofits: 8\nmean year percentage profit: 215.1878652911773%\nwinrate: 40.0%\nmean deviation: 2.917382949881604%\nSharpe ratio: 0.02203412259055281\nSortino ratio: 0.02774402450236864\ncalmar ratio: 21.321078596349782\nmax drawdown: 10.092728860725552%\n```\n\n## Run strategy\n\nUse the strategy on real moneys. YES, IT'S FULLY AUTOMATED!\n\n```python\nimport datetime\nfrom quick_trade.trading_sys import ExampleStrategies\nfrom quick_trade.brokers import TradingClient\nfrom quick_trade.plots import TraderGraph, make_figure\nimport ccxt\n\nticker = 'MATIC/USDT'\n\nstart_time = datetime.datetime(2021,  # year\n                               6,  # month\n                               24,  # day\n\n                               5,  # hour\n                               16,  # minute\n                               57)  # second (Leave a few seconds to download data from the exchange)\n\n\nclass MyTrade(ExampleStrategies):\n    @strategy\n    def strategy(self):\n        self.strategy_supertrend(multiplier=2, length=1, plot=False)\n        self.convert_signal()\n        self.set_credit_leverages(1)\n        self.sl_tp_adder(10)\n        return self.returns\n\n\nkeys = {'apiKey': 'your api key',\n        'secret': 'your secret key'}\nclient = TradingClient(ccxt.binance(config=keys))  # or any other exchange\n\ntrader = MyTrade(ticker=ticker,\n                 interval='1m',\n                 df=client.get_data_historical(ticker, limit=10))\nfig = make_trader_figure()\ngraph = TraderGraph(figure=fig)\ntrader.connect_graph(graph)\ntrader.set_client(client)\n\ntrader.realtime_trading(\n    strategy=trader.strategy,\n    start_time=start_time,\n    ticker=ticker,\n    limit=100,\n    wait_sl_tp_checking=5\n)\n\n```\n\n![image](https://github.com/quick-trade/quick_trade/blob/main/img/realtime_example.png?raw=true)\n\n## Additional Resources\n\nOld documentation (V3 doc): https://vladkochetov007.github.io/quick_trade.github.io\n\n# License\n\n<a rel=\"license\" href=\"http://creativecommons.org/licenses/by-nc-sa/4.0/\"><img alt=\"Creative Commons License\" style=\"border-width:0\" src=\"https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png\" /></a><br /><span xmlns:dct=\"http://purl.org/dc/terms/\" property=\"dct:title\">quick_trade</span> by <a xmlns:cc=\"http://creativecommons.org/ns#\" href=\"https://github.com/VladKochetov007\" property=\"cc:attributionName\" rel=\"cc:attributionURL\">Vladyslav Kochetov</a> is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by-nc-sa/4.0/\">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.<br />Permissions beyond the scope of this license may be available at <a xmlns:cc=\"http://creativecommons.org/ns#\" href=\"vladyslavdrrragonkoch@gmail.com\" rel=\"cc:morePermissions\">vladyslavdrrragonkoch@gmail.com</a>.\n",
    "bugtrack_url": null,
    "license": "cc-by-sa-4.0",
    "summary": "Library for easy management and customization of algorithmic trading.",
    "version": "8.0.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/quick-trade/quick_trade/issues",
        "Documentation": "https://quick-trade.github.io/quick_trade/#/",
        "Download": "https://github.com/quick-trade/quick_trade/archive/8.0.0.tar.gz",
        "Source": "https://github.com/quick-trade/quick_trade",
        "Twitter": "https://twitter.com/quick_trade_tw"
    },
    "split_keywords": [
        "technical-analysis",
        " python3",
        " trading",
        " trading-bot",
        " trading",
        " binance-trading",
        " ccxt"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "689db81d5f8e005ed9e6a22b000b5c2b8b04a905f173fe41e30c866fd8947ff8",
                "md5": "456b1695dfb0ea15cdb3b82f93fc6ff3",
                "sha256": "3d78c762e40c631d9b62d2c3c579ba8d80b32a2d772ab58bb2cea9c89a705570"
            },
            "downloads": -1,
            "filename": "quick_trade-8.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "456b1695dfb0ea15cdb3b82f93fc6ff3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 39458,
            "upload_time": "2024-12-06T00:52:36",
            "upload_time_iso_8601": "2024-12-06T00:52:36.658107Z",
            "url": "https://files.pythonhosted.org/packages/68/9d/b81d5f8e005ed9e6a22b000b5c2b8b04a905f173fe41e30c866fd8947ff8/quick_trade-8.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-06 00:52:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "quick-trade",
    "github_project": "quick_trade",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.26.1"
                ]
            ]
        },
        {
            "name": "plotly",
            "specs": [
                [
                    "==",
                    "5.15.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "2.0.2"
                ]
            ]
        },
        {
            "name": "ta",
            "specs": [
                [
                    "==",
                    "0.10.2"
                ]
            ]
        },
        {
            "name": "ccxt",
            "specs": [
                [
                    "==",
                    "4.1.19"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    "==",
                    "4.65.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": []
        }
    ],
    "lcname": "quick-trade"
}
        
Elapsed time: 1.09799s