ragcore


Nameragcore JSON
Version 1.0.3 PyPI version JSON
download
home_pagehttps://github.com/daved01/ragcore
SummaryA library to build Retrieval-Augmented Generation applications with only a few lines of code.
upload_time2024-03-02 12:16:34
maintainer
docs_urlNone
authorDavid Kirchhoff
requires_python>=3.10, <4
license
keywords retrieval augmented generation rag development artificial intelligence large language models
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # RAG Core

<p align="center">
  <a href="https://www.python.org/downloads/release/python-310/"><img src="https://img.shields.io/badge/python-3.10-green.svg" alt="Python 3.10"></a>
  <a href="https://www.python.org/downloads/release/python-311/"><img src="https://img.shields.io/badge/python-3.11-green.svg" alt="Python 3.11"></a>
  <a href="https://opensource.org/licenses/MIT"><img src="https://img.shields.io/badge/License-MIT-green.svg" alt="License: MIT"></a>
  <a href="https://pypi.org/project/ragcore"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/ragcore?color=blue"></a>
  <img src="https://github.com/daved01/ragcore/actions/workflows/code-check-main.yml/badge.svg" alt="GitHub CI">
</p>

A Retrieval-Augmented Generation library with a CLI interface. Build RAG applications with just a few commands and a configuration file.

## Supported setups

| Databases               | LLMs           | Embeddings     | Document types  |
| ----------------------- | -------------- | -------------- | --------------- |
| Chroma (local)          | OpenAI         | OpenAI         | PDF             |
| Pinecone (remote)       | AzureOpenAI    | AzureOpenAI    |                 |

For more details see the [documentation](https://daved01.github.io/ragcore/).

# Installation

To install, run

```bash
pip install ragcore
```

or clone and build from source

```bash
git clone https://github.com/daved01/ragcore.git
cd ragcore
pip install .
```

If everything worked, running

```bash
ragcore -h
```

should show you some information about `ragcore`.

# A Simple Example

To build an application with OpenAI or AzureOpenAI LLMs and embeddings, and a local database, first set your OpenAI [API key](https://platform.openai.com/api-keys) as described [here](https://platform.openai.com/docs/quickstart/step-2-setup-your-api-key):

```bash
export OPENAI_API_KEY=[your token]
```

Then, create a config file `config.yaml` like this in the root of your project:

```bash
database:
  provider: "chroma"
  number_search_results: 5
  base_dir: "data/database"

splitter:
  chunk_overlap: 256
  chunk_size: 1024

embedding:
  provider: "openai"
  model: "text-embedding-model"

llm:
  provider: "openai"
  model: "gpt-model"

```

And finally, create your application using this config file:

```python
from ragcore import RAGCore


app = RAGCore() # pass config=<path-to-config.yaml> if not in root

# Upload a document "My_Book.pdf"
app.add(path="My_Book.pdf")

# Now you can ask questions
answer = app.query(query="What did the elk say?")

print(answer.content)

# List the document's title and content on which the response is based
for doc in answer.documents:
  print(doc.title, " | ", doc.content)

# List all documents in the database
print(app.get_titles())

# You can delete by title
app.delete(title="My_Book")
```

And that's it! For more information, as well as an overview of supported integrations check out the [documentation](https://daved01.github.io/ragcore/).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/daved01/ragcore",
    "name": "ragcore",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.10, <4",
    "maintainer_email": "",
    "keywords": "retrieval augmented generation,rag,development,artificial intelligence,large language models",
    "author": "David Kirchhoff",
    "author_email": "david.kirchhoff@mail.utoronto.ca",
    "download_url": "https://files.pythonhosted.org/packages/d6/16/08ae9b684712b610fd7b5351059a5a08a05d91b3c1871f6f64b139a03724/ragcore-1.0.3.tar.gz",
    "platform": null,
    "description": "# RAG Core\n\n<p align=\"center\">\n  <a href=\"https://www.python.org/downloads/release/python-310/\"><img src=\"https://img.shields.io/badge/python-3.10-green.svg\" alt=\"Python 3.10\"></a>\n  <a href=\"https://www.python.org/downloads/release/python-311/\"><img src=\"https://img.shields.io/badge/python-3.11-green.svg\" alt=\"Python 3.11\"></a>\n  <a href=\"https://opensource.org/licenses/MIT\"><img src=\"https://img.shields.io/badge/License-MIT-green.svg\" alt=\"License: MIT\"></a>\n  <a href=\"https://pypi.org/project/ragcore\"><img alt=\"PyPI - Version\" src=\"https://img.shields.io/pypi/v/ragcore?color=blue\"></a>\n  <img src=\"https://github.com/daved01/ragcore/actions/workflows/code-check-main.yml/badge.svg\" alt=\"GitHub CI\">\n</p>\n\nA Retrieval-Augmented Generation library with a CLI interface. Build RAG applications with just a few commands and a configuration file.\n\n## Supported setups\n\n| Databases               | LLMs           | Embeddings     | Document types  |\n| ----------------------- | -------------- | -------------- | --------------- |\n| Chroma (local)          | OpenAI         | OpenAI         | PDF             |\n| Pinecone (remote)       | AzureOpenAI    | AzureOpenAI    |                 |\n\nFor more details see the [documentation](https://daved01.github.io/ragcore/).\n\n# Installation\n\nTo install, run\n\n```bash\npip install ragcore\n```\n\nor clone and build from source\n\n```bash\ngit clone https://github.com/daved01/ragcore.git\ncd ragcore\npip install .\n```\n\nIf everything worked, running\n\n```bash\nragcore -h\n```\n\nshould show you some information about `ragcore`.\n\n# A Simple Example\n\nTo build an application with OpenAI or AzureOpenAI LLMs and embeddings, and a local database, first set your OpenAI [API key](https://platform.openai.com/api-keys) as described [here](https://platform.openai.com/docs/quickstart/step-2-setup-your-api-key):\n\n```bash\nexport OPENAI_API_KEY=[your token]\n```\n\nThen, create a config file `config.yaml` like this in the root of your project:\n\n```bash\ndatabase:\n  provider: \"chroma\"\n  number_search_results: 5\n  base_dir: \"data/database\"\n\nsplitter:\n  chunk_overlap: 256\n  chunk_size: 1024\n\nembedding:\n  provider: \"openai\"\n  model: \"text-embedding-model\"\n\nllm:\n  provider: \"openai\"\n  model: \"gpt-model\"\n\n```\n\nAnd finally, create your application using this config file:\n\n```python\nfrom ragcore import RAGCore\n\n\napp = RAGCore() # pass config=<path-to-config.yaml> if not in root\n\n# Upload a document \"My_Book.pdf\"\napp.add(path=\"My_Book.pdf\")\n\n# Now you can ask questions\nanswer = app.query(query=\"What did the elk say?\")\n\nprint(answer.content)\n\n# List the document's title and content on which the response is based\nfor doc in answer.documents:\n  print(doc.title, \" | \", doc.content)\n\n# List all documents in the database\nprint(app.get_titles())\n\n# You can delete by title\napp.delete(title=\"My_Book\")\n```\n\nAnd that's it! For more information, as well as an overview of supported integrations check out the [documentation](https://daved01.github.io/ragcore/).\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A library to build Retrieval-Augmented Generation applications with only a few lines of code.",
    "version": "1.0.3",
    "project_urls": {
        "Bug Reports": "https://github.com/daved01/ragcore/issues",
        "Documentation": "https://daved01.github.io/ragcore/",
        "Funding": "https://github.com/sponsors/daved01",
        "Homepage": "https://github.com/daved01/ragcore",
        "Say Thanks!": "https://www.paypal.com/donate/?hosted_button_id=JH7HXP6VE5U3S",
        "Source": "https://github.com/daved01/ragcore"
    },
    "split_keywords": [
        "retrieval augmented generation",
        "rag",
        "development",
        "artificial intelligence",
        "large language models"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e4f6cb98e56b4e56359539202f11f80f4056375a7b3de591a937dd3876754c63",
                "md5": "7e51d69d4577deb8d39e8726fd31f083",
                "sha256": "0198d71689d112ca8b6a3bb01ab1a22b314ac05b3169a3939333fa0380c24b67"
            },
            "downloads": -1,
            "filename": "ragcore-1.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7e51d69d4577deb8d39e8726fd31f083",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10, <4",
            "size": 30413,
            "upload_time": "2024-03-02T12:16:32",
            "upload_time_iso_8601": "2024-03-02T12:16:32.393498Z",
            "url": "https://files.pythonhosted.org/packages/e4/f6/cb98e56b4e56359539202f11f80f4056375a7b3de591a937dd3876754c63/ragcore-1.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d61608ae9b684712b610fd7b5351059a5a08a05d91b3c1871f6f64b139a03724",
                "md5": "a2cdca5b4acff33e32ff292bfdc18a75",
                "sha256": "1b8a4b376bf7c551890e5db2895b839d4da13d6a10ced6704b676c6c4abbbc5e"
            },
            "downloads": -1,
            "filename": "ragcore-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "a2cdca5b4acff33e32ff292bfdc18a75",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10, <4",
            "size": 24476,
            "upload_time": "2024-03-02T12:16:34",
            "upload_time_iso_8601": "2024-03-02T12:16:34.199779Z",
            "url": "https://files.pythonhosted.org/packages/d6/16/08ae9b684712b610fd7b5351059a5a08a05d91b3c1871f6f64b139a03724/ragcore-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-02 12:16:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "daved01",
    "github_project": "ragcore",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "ragcore"
}
        
Elapsed time: 0.24340s