roboflex.realsense


Nameroboflex.realsense JSON
Version 0.1.6 PyPI version JSON
download
home_pagehttps://github.com/flexrobotics/roboflex_realsense
SummaryRoboflex Realsense Library
upload_time2023-12-05 23:29:21
maintainer
docs_urlNone
authorColin Prepscius
requires_python>=3.6
licenseMIT
keywords realsense robotics middleware flexbuffers python c++ c++20
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # roboflex.realsense

Support for the Realsense D435 camera. We really just wrap the sdk and encode data into messages. It might work with other D4** cameras - YMMV.

## System Dependencies

Sort of: none. We use cmake to build. If find_package(realsense2) fails (meaning cmake can't find some system-installed version of realsense2), we fetch and build it. 

## Install

    pip install roboflex.realsense

## Import

    import roboflex.realsense as rr

## Nodes

There is only one: **RealsenseSensor**

You can use a class method to discover the serial numbers of all the cameras currently connected to your computer:

    rr.RealsenseSensor.get_connected_device_serial_numbers()

There are two ways to instantiate realsense sensors:

1. Via the constructor - you must know the serial number. See below for documentation of the Config type.

        sensor = rr.RealsenseSensor(
            serial_number: str,
            config: rr.Config,
            name: str = "RealsenseSensor",
        )

2. Via a class method - if you have a single realsense attached,
this is the easiest way - you don't even have to know the serial number.

        sensor = rr.RealsenseSensor.get_one_sensor(
            config: rr.Config,
            name: str = "RealsenseSensor",
        )

Use it like so:

    # must be started!
    sensor.start()

    # You can get the serial number:
    sensor.serial_number -> str

    # You can get the configuration back:
    sensor.config -> rr.Config

    # You can get the two camera-k matrices:
    sensor.depth_camera_k -> np.array
    sensor.color_camera_k -> np.array

    # You can get various device values:
    sensor.width_pixels_color -> int
    sensor.height_pixels_color -> int
    sensor.width_pixels_depth -> int
    sensor.height_pixels_depth -> int
    sensor.fps_color -> int
    sensor.fps_depth -> int

    # You can manually trigger a message event:
    # (for the most part you won't need this - only
    # if you have special need to control the message
    # production), and don't want to use "start".
    sensor.produce()

    # You can turn the IR laser off and on
    sensor.set_laser_on_off(False)
    sensor.set_laser_on_off(True)


## Messages

RealsenseSensor produces a single message type: **RealsenseFrameset**.

    from roboflex.realsense import RealsenseFrameset

API:

    # the timestamp just before reading from device
    message.t0 -> Float

    # the timestamp just after reading from device
    message.t1 -> Float

    # numpy array of shape=(height, width, 3), dtype=uint8
    message.rgb -> np.ndarray

    # numpy array of shape=(height, width), dtype=uint16
    message.depth -> np.ndarray

    # numpy array of shape=(height, width), dtype=uint8
    message.ir1 -> np.ndarray

    # numpy array of shape=(height, width), dtype=uint8
    message.ir2 -> np.ndarray

    # which camera (if any) the frame is aligned to
    message.aligned_to -> rr.CameraType

    # the serial number of the camera that produced this frameset
    message.serial_number -> str

    # the color camera k of the camera that produced this frameset
    message.camera_k_rgb -> numpy array of (3, 3)

    # the depth camera k of the camera that produced this frameset
    message.camera_k_depth -> numpy array of (3, 3)

    # the ir1 camera k of the camera that produced this frameset
    message.camera_k_ir1 -> numpy array of (3, 3)

    # the ir2 camera k of the camera that produced this frameset
    message.camera_k_ir2 -> numpy array of (3, 3)

    # the index, from the device, of this frameset
    message.frame_number -> int

    # the timestamp, from the device, of this frameset, in epoch seconds
    message.timestamp -> float

DYNOFLEX:

    d = DynoFlex.from_msg(message)

    # the timestamp just before reading from device
    d["t0"] -> Double

    # the timestamp just after reading from device
    d["t1"] -> Double

    # numpy array of shape=(height, width, 3), dtype=uint8
    d["rgb"] -> np.ndarray

    # numpy array of shape=(height, width), dtype=uint16
    d["depth"] -> np.ndarray

    # numpy array of shape=(height, width), dtype=uint8
    d["ir1"] -> np.ndarray

    # numpy array of shape=(height, width), dtype=uint8
    d["ir2"] -> np.ndarray

    # which camera (if any) the frame is aligned to
    d["aligned_to"] -> rr.CameraType

    # the serial number of the camera that produced this frameset
    d["serial_number"] -> str

    # the color camera k of the camera that produced this frameset
    d["camera_k_rgb"] -> numpy array of (3, 3)

    # the depth camera k of the camera that produced this frameset
    d["camera_k_depth"] -> numpy array of (3, 3)

    # the camera k of the infrared camera 1 that produced this frameset
    d["camera_k_ir1"] -> numpy array of (3, 3)

    # the camera k of the infrared camera 2 that produced this frameset
    d["camera_k_ir2"] -> numpy array of (3, 3)

    # the index, from the device, of this frameset
    d["n"] -> int

    # the timestamp, from the device, of this frameset, in epoch seconds
    d["t"] -> float

## Other

Some types used for configuration

Some enums:

    CameraType:
        RGB,
        DEPTH,
        IR1,    # raw infrared camera1
        IR2     # raw infrared camera2
    
    # You can OR these together like so:

    my_cameras = camera_type_or([CameraType.RGB, CameraType.DEPTH, etc])

    # You can test for camera types:

    has_rgb = camera_type_contains(my_camera_type, CameraType.RGB)

    CameraAlignment:
        NONE,
        RGB,
        DEPTH

    D400VisualPreset:
        CUSTOM,
        DEFAULT,
        HAND,
        HIGH_ACCURACY,
        HIGH_DENSITY,
        MEDIUM_DENSITY

TemporalFilterParameters:

    f = rr.TemporalFilterParameters(
        alpha: float = 0.4,
        delta: float = 20.0,
        persistance_control: int = 7,
    )

    f.alpha -> float
    f.delta -> float
    f.persistance_control -> int

Config:

    # all paramters are optional - defaults shown below
    c = rr.Config(
        camera_type: rr.CameraType = CameraType.RGB | CameraType.DEPTH,
        align_to: rr.CameraAlignment = rr.CameraAlignment.NONE,
        prioritize_ae: Bool = False,
        rgb_settings: Dict[str, int] = {
            "fps": 0,
            "width": 0,
            "height": 0,
        },
        depth_settings: Dict[str, int] = {
            "fps": 0,
            "width": 0,
            "height": 0,
        },
        depth_visual_preset: rr.D400VisualPreset = rr.D400VisualPreset.DEFAULT,
        temporal_filter_parameters: rr.TemporalFilterParameters = None,
        hole_filling_mode: Optional[int] = None,
        decimation_filter: Optional[int] = None,
    )

    # which actual cameras are in use - this a bitmask, OR-ed together
    c.camera_type -> rr.CameraType

    # which camera the frames will be aligned to (if any)
    c.align_to -> rr.CameraAligment

    # When `true`, allows fps to drop in order to better expose
    # frames, such as in dimly lit environments
    c.prioritize_ae -> Bool

    # fps, height, and width of the color camera
    c.rgb_settings -> Dict[str, int]

    # fps, height, and width of the depth camera
    c.depth_settings -> Dict[str, int]

    # the depth camera visual preset
    c.depth_visual_preset -> rr.D400VisualPreset

    # the temporal filter, if any - can be None
    c.temporal_filter_parameters -> rr.TemporalFilterParameters

    # the 'hole filling mode', if any - can be None
    # 0: fill_from_left
    # 1: farthest_from_around
    # 2: nearest_from_around
    c.hole_filling_mode -> int

    # NOTE!
    The realsense camera supports many more settings, such as laser power, etc. If there's something you want supported that's not
    here, just let me know.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/flexrobotics/roboflex_realsense",
    "name": "roboflex.realsense",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "realsense,robotics,middleware,flexbuffers,python,c++,c++20",
    "author": "Colin Prepscius",
    "author_email": "colinprepscius@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/53/8c/370f5f3b073bf768d261b8000b5a797fdf91f994977be4f8135555cc2cf1/roboflex.realsense-0.1.6.tar.gz",
    "platform": null,
    "description": "# roboflex.realsense\n\nSupport for the Realsense D435 camera. We really just wrap the sdk and encode data into messages. It might work with other D4** cameras - YMMV.\n\n## System Dependencies\n\nSort of: none. We use cmake to build. If find_package(realsense2) fails (meaning cmake can't find some system-installed version of realsense2), we fetch and build it. \n\n## Install\n\n    pip install roboflex.realsense\n\n## Import\n\n    import roboflex.realsense as rr\n\n## Nodes\n\nThere is only one: **RealsenseSensor**\n\nYou can use a class method to discover the serial numbers of all the cameras currently connected to your computer:\n\n    rr.RealsenseSensor.get_connected_device_serial_numbers()\n\nThere are two ways to instantiate realsense sensors:\n\n1. Via the constructor - you must know the serial number. See below for documentation of the Config type.\n\n        sensor = rr.RealsenseSensor(\n            serial_number: str,\n            config: rr.Config,\n            name: str = \"RealsenseSensor\",\n        )\n\n2. Via a class method - if you have a single realsense attached,\nthis is the easiest way - you don't even have to know the serial number.\n\n        sensor = rr.RealsenseSensor.get_one_sensor(\n            config: rr.Config,\n            name: str = \"RealsenseSensor\",\n        )\n\nUse it like so:\n\n    # must be started!\n    sensor.start()\n\n    # You can get the serial number:\n    sensor.serial_number -> str\n\n    # You can get the configuration back:\n    sensor.config -> rr.Config\n\n    # You can get the two camera-k matrices:\n    sensor.depth_camera_k -> np.array\n    sensor.color_camera_k -> np.array\n\n    # You can get various device values:\n    sensor.width_pixels_color -> int\n    sensor.height_pixels_color -> int\n    sensor.width_pixels_depth -> int\n    sensor.height_pixels_depth -> int\n    sensor.fps_color -> int\n    sensor.fps_depth -> int\n\n    # You can manually trigger a message event:\n    # (for the most part you won't need this - only\n    # if you have special need to control the message\n    # production), and don't want to use \"start\".\n    sensor.produce()\n\n    # You can turn the IR laser off and on\n    sensor.set_laser_on_off(False)\n    sensor.set_laser_on_off(True)\n\n\n## Messages\n\nRealsenseSensor produces a single message type: **RealsenseFrameset**.\n\n    from roboflex.realsense import RealsenseFrameset\n\nAPI:\n\n    # the timestamp just before reading from device\n    message.t0 -> Float\n\n    # the timestamp just after reading from device\n    message.t1 -> Float\n\n    # numpy array of shape=(height, width, 3), dtype=uint8\n    message.rgb -> np.ndarray\n\n    # numpy array of shape=(height, width), dtype=uint16\n    message.depth -> np.ndarray\n\n    # numpy array of shape=(height, width), dtype=uint8\n    message.ir1 -> np.ndarray\n\n    # numpy array of shape=(height, width), dtype=uint8\n    message.ir2 -> np.ndarray\n\n    # which camera (if any) the frame is aligned to\n    message.aligned_to -> rr.CameraType\n\n    # the serial number of the camera that produced this frameset\n    message.serial_number -> str\n\n    # the color camera k of the camera that produced this frameset\n    message.camera_k_rgb -> numpy array of (3, 3)\n\n    # the depth camera k of the camera that produced this frameset\n    message.camera_k_depth -> numpy array of (3, 3)\n\n    # the ir1 camera k of the camera that produced this frameset\n    message.camera_k_ir1 -> numpy array of (3, 3)\n\n    # the ir2 camera k of the camera that produced this frameset\n    message.camera_k_ir2 -> numpy array of (3, 3)\n\n    # the index, from the device, of this frameset\n    message.frame_number -> int\n\n    # the timestamp, from the device, of this frameset, in epoch seconds\n    message.timestamp -> float\n\nDYNOFLEX:\n\n    d = DynoFlex.from_msg(message)\n\n    # the timestamp just before reading from device\n    d[\"t0\"] -> Double\n\n    # the timestamp just after reading from device\n    d[\"t1\"] -> Double\n\n    # numpy array of shape=(height, width, 3), dtype=uint8\n    d[\"rgb\"] -> np.ndarray\n\n    # numpy array of shape=(height, width), dtype=uint16\n    d[\"depth\"] -> np.ndarray\n\n    # numpy array of shape=(height, width), dtype=uint8\n    d[\"ir1\"] -> np.ndarray\n\n    # numpy array of shape=(height, width), dtype=uint8\n    d[\"ir2\"] -> np.ndarray\n\n    # which camera (if any) the frame is aligned to\n    d[\"aligned_to\"] -> rr.CameraType\n\n    # the serial number of the camera that produced this frameset\n    d[\"serial_number\"] -> str\n\n    # the color camera k of the camera that produced this frameset\n    d[\"camera_k_rgb\"] -> numpy array of (3, 3)\n\n    # the depth camera k of the camera that produced this frameset\n    d[\"camera_k_depth\"] -> numpy array of (3, 3)\n\n    # the camera k of the infrared camera 1 that produced this frameset\n    d[\"camera_k_ir1\"] -> numpy array of (3, 3)\n\n    # the camera k of the infrared camera 2 that produced this frameset\n    d[\"camera_k_ir2\"] -> numpy array of (3, 3)\n\n    # the index, from the device, of this frameset\n    d[\"n\"] -> int\n\n    # the timestamp, from the device, of this frameset, in epoch seconds\n    d[\"t\"] -> float\n\n## Other\n\nSome types used for configuration\n\nSome enums:\n\n    CameraType:\n        RGB,\n        DEPTH,\n        IR1,    # raw infrared camera1\n        IR2     # raw infrared camera2\n    \n    # You can OR these together like so:\n\n    my_cameras = camera_type_or([CameraType.RGB, CameraType.DEPTH, etc])\n\n    # You can test for camera types:\n\n    has_rgb = camera_type_contains(my_camera_type, CameraType.RGB)\n\n    CameraAlignment:\n        NONE,\n        RGB,\n        DEPTH\n\n    D400VisualPreset:\n        CUSTOM,\n        DEFAULT,\n        HAND,\n        HIGH_ACCURACY,\n        HIGH_DENSITY,\n        MEDIUM_DENSITY\n\nTemporalFilterParameters:\n\n    f = rr.TemporalFilterParameters(\n        alpha: float = 0.4,\n        delta: float = 20.0,\n        persistance_control: int = 7,\n    )\n\n    f.alpha -> float\n    f.delta -> float\n    f.persistance_control -> int\n\nConfig:\n\n    # all paramters are optional - defaults shown below\n    c = rr.Config(\n        camera_type: rr.CameraType = CameraType.RGB | CameraType.DEPTH,\n        align_to: rr.CameraAlignment = rr.CameraAlignment.NONE,\n        prioritize_ae: Bool = False,\n        rgb_settings: Dict[str, int] = {\n            \"fps\": 0,\n            \"width\": 0,\n            \"height\": 0,\n        },\n        depth_settings: Dict[str, int] = {\n            \"fps\": 0,\n            \"width\": 0,\n            \"height\": 0,\n        },\n        depth_visual_preset: rr.D400VisualPreset = rr.D400VisualPreset.DEFAULT,\n        temporal_filter_parameters: rr.TemporalFilterParameters = None,\n        hole_filling_mode: Optional[int] = None,\n        decimation_filter: Optional[int] = None,\n    )\n\n    # which actual cameras are in use - this a bitmask, OR-ed together\n    c.camera_type -> rr.CameraType\n\n    # which camera the frames will be aligned to (if any)\n    c.align_to -> rr.CameraAligment\n\n    # When `true`, allows fps to drop in order to better expose\n    # frames, such as in dimly lit environments\n    c.prioritize_ae -> Bool\n\n    # fps, height, and width of the color camera\n    c.rgb_settings -> Dict[str, int]\n\n    # fps, height, and width of the depth camera\n    c.depth_settings -> Dict[str, int]\n\n    # the depth camera visual preset\n    c.depth_visual_preset -> rr.D400VisualPreset\n\n    # the temporal filter, if any - can be None\n    c.temporal_filter_parameters -> rr.TemporalFilterParameters\n\n    # the 'hole filling mode', if any - can be None\n    # 0: fill_from_left\n    # 1: farthest_from_around\n    # 2: nearest_from_around\n    c.hole_filling_mode -> int\n\n    # NOTE!\n    The realsense camera supports many more settings, such as laser power, etc. If there's something you want supported that's not\n    here, just let me know.\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Roboflex Realsense Library",
    "version": "0.1.6",
    "project_urls": {
        "Homepage": "https://github.com/flexrobotics/roboflex_realsense"
    },
    "split_keywords": [
        "realsense",
        "robotics",
        "middleware",
        "flexbuffers",
        "python",
        "c++",
        "c++20"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "538c370f5f3b073bf768d261b8000b5a797fdf91f994977be4f8135555cc2cf1",
                "md5": "5e86076d9394b2b635c4b65d24be731b",
                "sha256": "2e5a564b08a863d2ad39e97f8139a09b458031f53fe95b7f4446ed7ee9059233"
            },
            "downloads": -1,
            "filename": "roboflex.realsense-0.1.6.tar.gz",
            "has_sig": false,
            "md5_digest": "5e86076d9394b2b635c4b65d24be731b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 18658,
            "upload_time": "2023-12-05T23:29:21",
            "upload_time_iso_8601": "2023-12-05T23:29:21.466278Z",
            "url": "https://files.pythonhosted.org/packages/53/8c/370f5f3b073bf768d261b8000b5a797fdf91f994977be4f8135555cc2cf1/roboflex.realsense-0.1.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-05 23:29:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "flexrobotics",
    "github_project": "roboflex_realsense",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "roboflex.realsense"
}
        
Elapsed time: 0.33911s