# Ribosome profiling with Bayesian predictions (Rp-Bp)
Ribosome profiling (Ribo-seq) is an RNA-sequencing-based readout of RNA translation. Isolation and deep-sequencing of ribosome-protected RNA fragments (ribosome footprints) provides a genome-wide snapshot of the translatome at sub-codon resolution. **Rp-Bp** is an unsupervised Bayesian approach to predict translated open reading frames (ORFs) from ribosome profiles. **Rp-Bp** can be used for ORF discovery, or simply to estimate periodicity in a set of Ribo-seq samples. When used for ORF discovery, **Rp-Bp** automatically classifies ORFs into different biotypes or categories, relative to their host transcript.
**Rp-Bp** comes with two _interactive dashboards_ or _web applications_, one for read and periodicity quality control, the other to facilitate Ribo-seq ORFs discovery.
<p align="center">
<a href="https://rp-bp.readthedocs.io/en/latest/"><img alt="Rp-Bp" src="https://github.com/dieterich-lab/rp-bp/raw/master/docs/source/_static/logo-rpbp-dark.png"></a>
</p>
<p align="center">
<a href="http://bioconda.github.io/recipes/rpbp/README.html"><img alt="Install with bioconda" src="https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat"></a>
<a href="https://pypi.org/project/rpbp/"><img alt="PyPI" src="https://img.shields.io/pypi/v/rpbp"></a>
<a href="https://github.com/dieterich-lab/rp-bp/actions/workflows/ci.yml"><img alt="CI" src="https://github.com/dieterich-lab/rp-bp/actions/workflows/ci.yml/badge.svg"></a>
<a href="https://rp-bp.readthedocs.io/en/latest/?badge=latest"><img alt="Docs" src="https://readthedocs.org/projects/rp-bp/badge/?version=latest"></a>
</p>
---
## Documentation
Consult the [user guide](http://rp-bp.readthedocs.io/en/latest/) for instructions on how to install the package, or to use Docker/Singularity containers with the package pre-installed. Detailed usage instructions and tutorials are available.
## How to report issues
For bugs, issues, or feature requests, use the [bug tracker](https://github.com/dieterich-lab/rp-bp/issues). Follow the instructions and guidelines given in the templates.
## How to cite
Brandon Malone, Ilian Atanassov, Florian Aeschimann, Xinping Li, Helge Großhans, Christoph Dieterich. [Bayesian prediction of RNA translation from ribosome profiling](https://doi.org/10.1093/nar/gkw1350), _Nucleic Acids Research_, Volume 45, Issue 6, 7 April 2017, Pages 2960-2972.
## License
The MIT License (MIT). Copyright (c) 2016 dieterich-lab.
Raw data
{
"_id": null,
"home_page": "",
"name": "rpbp",
"maintainer": "",
"docs_url": null,
"requires_python": "<3.11,>=3.7",
"maintainer_email": "Etienne Boileau <boileau@uni-heidelberg.de>",
"keywords": "bioinformatics,riboseq,open reading frame discovery,translation",
"author": "Brandon Malone",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/fa/f5/f2a58fe6263ce19a02ee860a76d3582582d6bc29d5a4a79425f6f2e10506/rpbp-3.0.3.tar.gz",
"platform": null,
"description": "# Ribosome profiling with Bayesian predictions (Rp-Bp)\n\nRibosome profiling (Ribo-seq) is an RNA-sequencing-based readout of RNA translation. Isolation and deep-sequencing of ribosome-protected RNA fragments (ribosome footprints) provides a genome-wide snapshot of the translatome at sub-codon resolution. **Rp-Bp** is an unsupervised Bayesian approach to predict translated open reading frames (ORFs) from ribosome profiles. **Rp-Bp** can be used for ORF discovery, or simply to estimate periodicity in a set of Ribo-seq samples. When used for ORF discovery, **Rp-Bp** automatically classifies ORFs into different biotypes or categories, relative to their host transcript.\n\n**Rp-Bp** comes with two _interactive dashboards_ or _web applications_, one for read and periodicity quality control, the other to facilitate Ribo-seq ORFs discovery.\n\n<p align=\"center\">\n <a href=\"https://rp-bp.readthedocs.io/en/latest/\"><img alt=\"Rp-Bp\" src=\"https://github.com/dieterich-lab/rp-bp/raw/master/docs/source/_static/logo-rpbp-dark.png\"></a>\n</p>\n\n<p align=\"center\">\n<a href=\"http://bioconda.github.io/recipes/rpbp/README.html\"><img alt=\"Install with bioconda\" src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat\"></a>\n<a href=\"https://pypi.org/project/rpbp/\"><img alt=\"PyPI\" src=\"https://img.shields.io/pypi/v/rpbp\"></a>\n<a href=\"https://github.com/dieterich-lab/rp-bp/actions/workflows/ci.yml\"><img alt=\"CI\" src=\"https://github.com/dieterich-lab/rp-bp/actions/workflows/ci.yml/badge.svg\"></a>\n<a href=\"https://rp-bp.readthedocs.io/en/latest/?badge=latest\"><img alt=\"Docs\" src=\"https://readthedocs.org/projects/rp-bp/badge/?version=latest\"></a>\n</p>\n\n---\n\n## Documentation\n\nConsult the [user guide](http://rp-bp.readthedocs.io/en/latest/) for instructions on how to install the package, or to use Docker/Singularity containers with the package pre-installed. Detailed usage instructions and tutorials are available.\n\n## How to report issues\n\nFor bugs, issues, or feature requests, use the [bug tracker](https://github.com/dieterich-lab/rp-bp/issues). Follow the instructions and guidelines given in the templates.\n\n## How to cite\n\nBrandon Malone, Ilian Atanassov, Florian Aeschimann, Xinping Li, Helge Gro\u00dfhans, Christoph Dieterich. [Bayesian prediction of RNA translation from ribosome profiling](https://doi.org/10.1093/nar/gkw1350), _Nucleic Acids Research_, Volume 45, Issue 6, 7 April 2017, Pages 2960-2972.\n\n## License\n\nThe MIT License (MIT). Copyright (c) 2016 dieterich-lab.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Rp-Bp: Ribosome Profiling with Bayesian Predictions",
"version": "3.0.3",
"project_urls": {
"Github": "https://github.com/dieterich-lab/rp-bp",
"Issues": "https://github.com/dieterich-lab/rp-bp/issues"
},
"split_keywords": [
"bioinformatics",
"riboseq",
"open reading frame discovery",
"translation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7a5b5f337dc23ef2ac34e1e8951be1184eed6cb82644ce62405ab3d0f9fc6e3f",
"md5": "113265a8d0f05847666dfa2d92318974",
"sha256": "1bb6c435c1b25092946e56ef1a3705419baabc18cb98852c7964dc8cbbcd68af"
},
"downloads": -1,
"filename": "rpbp-3.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "113265a8d0f05847666dfa2d92318974",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.11,>=3.7",
"size": 424963,
"upload_time": "2023-09-14T06:45:35",
"upload_time_iso_8601": "2023-09-14T06:45:35.598362Z",
"url": "https://files.pythonhosted.org/packages/7a/5b/5f337dc23ef2ac34e1e8951be1184eed6cb82644ce62405ab3d0f9fc6e3f/rpbp-3.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "faf5f2a58fe6263ce19a02ee860a76d3582582d6bc29d5a4a79425f6f2e10506",
"md5": "c32badbb9d99acc8319335e26e574b3d",
"sha256": "1b4a80db38e551b9ba79c0146f6cfd039cd85153f73f739bfb4e957e76e07146"
},
"downloads": -1,
"filename": "rpbp-3.0.3.tar.gz",
"has_sig": false,
"md5_digest": "c32badbb9d99acc8319335e26e574b3d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.11,>=3.7",
"size": 404683,
"upload_time": "2023-09-14T06:45:37",
"upload_time_iso_8601": "2023-09-14T06:45:37.227809Z",
"url": "https://files.pythonhosted.org/packages/fa/f5/f2a58fe6263ce19a02ee860a76d3582582d6bc29d5a4a79425f6f2e10506/rpbp-3.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-14 06:45:37",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "dieterich-lab",
"github_project": "rp-bp",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "rpbp"
}