# rtmlib
![demo](https://github.com/Tau-J/rtmlib/assets/13503330/b7e8ce8b-3134-43cf-bba6-d81656897289)
rtmlib is a super lightweight library to conduct pose estimation based on [RTMPose](https://github.com/open-mmlab/mmpose/tree/dev-1.x/projects/rtmpose) models **WITHOUT** any dependencies like mmcv, mmpose, mmdet, etc.
Basically, rtmlib only requires these dependencies:
- numpy
- opencv-python
- opencv-contrib-python
- onnxruntime
Optionally, you can use other common backends like opencv, onnxruntime, openvino, tensorrt to accelerate the inference process.
- For openvino users, please add the path `<your python path>\envs\<your env name>\Lib\site-packages\openvino\libs` into your environment path.
## Installation
- install from pypi:
```shell
pip install rtmlib -i https://pypi.org/simple
```
- install from source code:
```shell
git clone https://github.com/Tau-J/rtmlib.git
cd rtmlib
pip install -r requirements.txt
pip install -e .
# [optional]
# pip install onnxruntime-gpu
# pip install openvino
```
## Quick Start
Here is a simple demo to show how to use rtmlib to conduct pose estimation on a single image.
```python
import cv2
from rtmlib import Wholebody, draw_skeleton
device = 'cpu' # cpu, cuda, mps
backend = 'onnxruntime' # opencv, onnxruntime, openvino
img = cv2.imread('./demo.jpg')
openpose_skeleton = False # True for openpose-style, False for mmpose-style
wholebody = Wholebody(to_openpose=openpose_skeleton,
mode='balanced', # 'performance', 'lightweight', 'balanced'. Default: 'balanced'
backend=backend, device=device)
keypoints, scores = wholebody(img)
# visualize
# if you want to use black background instead of original image,
# img_show = np.zeros(img_show.shape, dtype=np.uint8)
img_show = draw_skeleton(img_show, keypoints, scores, kpt_thr=0.5)
cv2.imshow('img', img_show)
cv2.waitKey()
```
## WebUI
Run `webui.py`:
```shell
# Please make sure you have installed gradio
# pip install gradio
python webui.py
```
![image](https://github.com/Tau-J/rtmlib/assets/13503330/49ef11a1-a1b5-4a20-a2e1-d49f8be6a25d)
## APIs
- Solutions (High-level APIs)
- [Wholebody](/rtmlib/tools/solution/wholebody.py)
- [Body](/rtmlib/tools/solution/body.py)
- [Body_with_feet](/rtmlib/tools/solution/body_with_feet.py)
- [Hand](/rtmlib/tools/solution/hand.py)
- [PoseTracker](/rtmlib/tools/solution/pose_tracker.py)
- Models (Low-level APIs)
- [YOLOX](/rtmlib/tools/object_detection/yolox.py)
- [RTMDet](/rtmlib/tools/object_detection/rtmdet.py)
- [RTMPose](/rtmlib/tools/pose_estimation/rtmpose.py)
- RTMPose for 17 keypoints
- RTMPose for 26 keypoints
- RTMW for 133 keypoints
- DWPose for 133 keypoints
- RTMO for one-stage pose estimation (17 keypoints)
- Visualization
- [draw_bbox](https://github.com/Tau-J/rtmlib/blob/adc69a850f59ba962d81a88cffd3f48cfc5fd1ae/rtmlib/draw.py#L9)
- [draw_skeleton](https://github.com/Tau-J/rtmlib/blob/adc69a850f59ba962d81a88cffd3f48cfc5fd1ae/rtmlib/draw.py#L16)
For high-level APIs (`Solution`), you can choose to pass `mode` or `det`+`pose` arguments to specify the detector and pose estimator you want to use.
```Python
# By mode
wholebody = Wholebody(mode='performance', # 'performance', 'lightweight', 'balanced'. Default: 'balanced'
backend=backend,
device=device)
# By det and pose
body = Body(det='https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_x_8xb8-300e_humanart-a39d44ed.zip',
det_input_size=(640, 640),
pose='https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-x_simcc-body7_pt-body7_700e-384x288-71d7b7e9_20230629.zip',
pose_input_size=(288, 384),
backend=backend,
device=device)
```
For low-level APIs (`Model`), you can specify the model you want to use by passing the `onnx_model` argument.
```Python
# By onnx_model (.onnx)
pose_model = RTMPose(onnx_model='/path/to/your_model.onnx', # download link or local path
backend=backend, device=device)
# By onnx_model (.zip)
pose_model = RTMPose(onnx_model='https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-m_simcc-body7_pt-body7_420e-256x192-e48f03d0_20230504.zip', # download link or local path
backend=backend, device=device)
```
## Model Zoo
By defaults, rtmlib will automatically download and apply models with the best performance.
More models can be found in [RTMPose Model Zoo](https://github.com/open-mmlab/mmpose/tree/dev-1.x/projects/rtmpose).
### Detectors
<details open>
<summary><b>Person</b></summary>
Notes:
- Models trained on HumanArt can detect both real human and cartoon characters.
- Models trained on COCO can only detect real human.
| ONNX Model | Input Size | AP (person) | Description |
| :---------------------------------------------------------------------------------------------------------------------------: | :--------: | :---------: | :----------------------: |
| [YOLOX-l](https://drive.google.com/file/d/1w9pXC8tT0p9ndMN-CArp1__b2GbzewWI/view?usp=sharing) | 640x640 | - | trained on COCO |
| [YOLOX-nano](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_nano_8xb8-300e_humanart-40f6f0d0.zip) | 416x416 | 38.9 | trained on HumanArt+COCO |
| [YOLOX-tiny](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_tiny_8xb8-300e_humanart-6f3252f9.zip) | 416x416 | 47.7 | trained on HumanArt+COCO |
| [YOLOX-s](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_s_8xb8-300e_humanart-3ef259a7.zip) | 640x640 | 54.6 | trained on HumanArt+COCO |
| [YOLOX-m](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_m_8xb8-300e_humanart-c2c7a14a.zip) | 640x640 | 59.1 | trained on HumanArt+COCO |
| [YOLOX-l](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_l_8xb8-300e_humanart-ce1d7a62.zip) | 640x640 | 60.2 | trained on HumanArt+COCO |
| [YOLOX-x](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_x_8xb8-300e_humanart-a39d44ed.zip) | 640x640 | 61.3 | trained on HumanArt+COCO |
</details>
### Pose Estimators
<details open>
<summary><b>Body 17 Keypoints</b></summary>
| ONNX Model | Input Size | AP (COCO) | Description |
| :-------------------------------------------------------------------------------------------------------------------------------------------------: | :--------: | :-------: | :-------------------: |
| [RTMPose-t](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-t_simcc-body7_pt-body7_420e-256x192-026a1439_20230504.zip) | 256x192 | 65.9 | trained on 7 datasets |
| [RTMPose-s](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-s_simcc-body7_pt-body7_420e-256x192-acd4a1ef_20230504.zip) | 256x192 | 69.7 | trained on 7 datasets |
| [RTMPose-m](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-m_simcc-body7_pt-body7_420e-256x192-e48f03d0_20230504.zip) | 256x192 | 74.9 | trained on 7 datasets |
| [RTMPose-l](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-l_simcc-body7_pt-body7_420e-256x192-4dba18fc_20230504.zip) | 256x192 | 76.7 | trained on 7 datasets |
| [RTMPose-l](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-l_simcc-body7_pt-body7_420e-384x288-3f5a1437_20230504.zip) | 384x288 | 78.3 | trained on 7 datasets |
| [RTMPose-x](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-x_simcc-body7_pt-body7_700e-384x288-71d7b7e9_20230629.zip) | 384x288 | 78.8 | trained on 7 datasets |
| [RTMO-s](https://download.openmmlab.com/mmpose/v1/projects/rtmo/onnx_sdk/rtmo-s_8xb32-600e_body7-640x640-dac2bf74_20231211.zip) | 640x640 | 68.6 | trained on 7 datasets |
| [RTMO-m](https://download.openmmlab.com/mmpose/v1/projects/rtmo/onnx_sdk/rtmo-m_16xb16-600e_body7-640x640-39e78cc4_20231211.zip) | 640x640 | 72.6 | trained on 7 datasets |
| [RTMO-l](https://download.openmmlab.com/mmpose/v1/projects/rtmo/onnx_sdk/rtmo-l_16xb16-600e_body7-640x640-b37118ce_20231211.zip) | 640x640 | 74.8 | trained on 7 datasets |
</details>
<details open>
<summary><b>Body 26 Keypoints</b></summary>
| ONNX Model | Input Size | AUC (Body8) | Description |
| :-------------------------------------------------------------------------------------------------------------------------------------------------: | :--------: | :-------: | :-------------------: |
| [RTMPose-t](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-t_simcc-body7_pt-body7-halpe26_700e-256x192-6020f8a6_20230605.zip) | 256x192 | 66.35 | trained on 7 datasets |
| [RTMPose-s](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-s_simcc-body7_pt-body7-halpe26_700e-256x192-7f134165_20230605.zip) | 256x192 | 68.62 | trained on 7 datasets |
| [RTMPose-m](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-m_simcc-body7_pt-body7-halpe26_700e-256x192-4d3e73dd_20230605.zip) | 256x192 | 71.91 | trained on 7 datasets |
| [RTMPose-l](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-l_simcc-body7_pt-body7-halpe26_700e-256x192-2abb7558_20230605.zip) | 256x192 | 73.19 | trained on 7 datasets |
| [RTMPose-m](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-m_simcc-body7_pt-body7-halpe26_700e-384x288-89e6428b_20230605.zip) | 384x288 | 73.56 | trained on 7 datasets |
| [RTMPose-l](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-l_simcc-body7_pt-body7-halpe26_700e-384x288-734182ce_20230605.zip) | 384x288 | 74.38 | trained on 7 datasets |
| [RTMPose-x](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-x_simcc-body7_pt-body7-halpe26_700e-384x288-7fb6e239_20230606.zip) | 384x288 | 74.82 | trained on 7 datasets |
</details>
<details open>
<summary><b>WholeBody 133 Keypoints</b></summary>
| ONNX Model | Input Size | AP (Whole) | Description |
| :------------------------------------------------------------------------------------------------------------------------------------------------: | :--------: | :--: | :-----------------------------: |
| [DWPose-t](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-t_simcc-ucoco_dw-ucoco_270e-256x192-dcf277bf_20230728.zip) | 256x192 | 48.5 | trained on COCO-Wholebody+UBody |
| [DWPose-s](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-s_simcc-ucoco_dw-ucoco_270e-256x192-3fd922c8_20230728.zip) | 256x192 | 53.8 | trained on COCO-Wholebody+UBody |
| [DWPose-m](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-m_simcc-ucoco_dw-ucoco_270e-256x192-c8b76419_20230728.zip) | 256x192 | 60.6 | trained on COCO-Wholebody+UBody |
| [DWPose-l](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-l_simcc-ucoco_dw-ucoco_270e-256x192-4d6dfc62_20230728.zip) | 256x192 | 63.1 | trained on COCO-Wholebody+UBody |
| [DWPose-l](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-l_simcc-ucoco_dw-ucoco_270e-384x288-2438fd99_20230728.zip) | 384x288 | 66.5 | trained on COCO-Wholebody+UBody |
| [RTMW-m](https://download.openmmlab.com/mmpose/v1/projects/rtmw/onnx_sdk/rtmw-dw-m-s_simcc-cocktail14_270e-256x192_20231122.zip) | 256x192 | 58.2 | trained on 14 datasets |
| [RTMW-l](https://download.openmmlab.com/mmpose/v1/projects/rtmw/onnx_sdk/rtmw-dw-x-l_simcc-cocktail14_270e-256x192_20231122.zip) | 256x192 | 66.0 | trained on 14 datasets |
| [RTMW-l](https://download.openmmlab.com/mmpose/v1/projects/rtmw/onnx_sdk/rtmw-dw-x-l_simcc-cocktail14_270e-384x288_20231122.zip) | 384x288 | 70.1 | trained on 14 datasets |
| [RTMW-x](https://download.openmmlab.com/mmpose/v1/projects/rtmw/onnx_sdk/rtmw-x_simcc-cocktail13_pt-ucoco_270e-384x288-0949e3a9_20230925.zip) | 384x288 | 70.2 | trained on 14 datasets |
</details>
### Visualization
| MMPose-style | OpenPose-style |
| :-------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------: |
| <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/c9e6fbaa-00f0-4961-ac87-d881edca778b"> | <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/9afc996a-59e6-4200-a655-59dae10b46c4"> |
| <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/b12e5f60-fec0-42a1-b7b6-365e93894fb1"> | <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/5acf7431-6ef0-44a8-ae52-9d8c8cb988c9"> |
| <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/091b8ce3-32d5-463b-9f41-5c683afa7a11"> | <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/4ffc7be1-50d6-44ff-8c6b-22ea8975aad4"> |
| <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/6fddfc14-7519-42eb-a7a4-98bf5441f324"> | <img width="357" alt="result" src="https://github.com/Tau-J/rtmlib/assets/13503330/2523e568-e0c3-4c2e-8e54-d1a67100c537"> |
### Citation
```
@misc{rtmlib,
title={rtmlib},
author={Jiang, Tao},
year={2023},
howpublished = {\url{https://github.com/Tau-J/rtmlib}},
}
@misc{jiang2023,
doi = {10.48550/ARXIV.2303.07399},
url = {https://arxiv.org/abs/2303.07399},
author = {Jiang, Tao and Lu, Peng and Zhang, Li and Ma, Ningsheng and Han, Rui and Lyu, Chengqi and Li, Yining and Chen, Kai},
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose},
publisher = {arXiv},
year = {2023},
copyright = {Creative Commons Attribution 4.0 International}
}
@misc{lu2023rtmo,
title={{RTMO}: Towards High-Performance One-Stage Real-Time Multi-Person Pose Estimation},
author={Peng Lu and Tao Jiang and Yining Li and Xiangtai Li and Kai Chen and Wenming Yang},
year={2023},
eprint={2312.07526},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
## Acknowledgement
Our code is based on these repos:
- [MMPose](https://github.com/open-mmlab/mmpose)
- [RTMPose](https://github.com/open-mmlab/mmpose/tree/dev-1.x/projects/rtmpose)
- [DWPose](https://github.com/IDEA-Research/DWPose/tree/opencv_onnx)
Raw data
{
"_id": null,
"home_page": "https://github.com/Tau-J/rtmlib",
"name": "rtmlib",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "pose estimation",
"author": "Tau-J",
"author_email": "taujiang@outlook.com",
"download_url": "https://files.pythonhosted.org/packages/f3/2e/1a8a27c6db42b366488e2f6d89dedfddf6b60f4be60d87c94ac631bf845b/rtmlib-0.0.12.tar.gz",
"platform": null,
"description": "# rtmlib\r\n\r\n![demo](https://github.com/Tau-J/rtmlib/assets/13503330/b7e8ce8b-3134-43cf-bba6-d81656897289)\r\n\r\nrtmlib is a super lightweight library to conduct pose estimation based on [RTMPose](https://github.com/open-mmlab/mmpose/tree/dev-1.x/projects/rtmpose) models **WITHOUT** any dependencies like mmcv, mmpose, mmdet, etc.\r\n\r\nBasically, rtmlib only requires these dependencies:\r\n\r\n- numpy\r\n- opencv-python\r\n- opencv-contrib-python\r\n- onnxruntime\r\n\r\nOptionally, you can use other common backends like opencv, onnxruntime, openvino, tensorrt to accelerate the inference process.\r\n\r\n- For openvino users, please add the path `<your python path>\\envs\\<your env name>\\Lib\\site-packages\\openvino\\libs` into your environment path.\r\n\r\n## Installation\r\n\r\n- install from pypi:\r\n\r\n```shell\r\npip install rtmlib -i https://pypi.org/simple\r\n```\r\n\r\n- install from source code:\r\n\r\n```shell\r\ngit clone https://github.com/Tau-J/rtmlib.git\r\ncd rtmlib\r\n\r\npip install -r requirements.txt\r\n\r\npip install -e .\r\n\r\n# [optional]\r\n# pip install onnxruntime-gpu\r\n# pip install openvino\r\n\r\n```\r\n\r\n## Quick Start\r\n\r\nHere is a simple demo to show how to use rtmlib to conduct pose estimation on a single image.\r\n\r\n```python\r\nimport cv2\r\n\r\nfrom rtmlib import Wholebody, draw_skeleton\r\n\r\ndevice = 'cpu' # cpu, cuda, mps\r\nbackend = 'onnxruntime' # opencv, onnxruntime, openvino\r\nimg = cv2.imread('./demo.jpg')\r\n\r\nopenpose_skeleton = False # True for openpose-style, False for mmpose-style\r\n\r\nwholebody = Wholebody(to_openpose=openpose_skeleton,\r\n mode='balanced', # 'performance', 'lightweight', 'balanced'. Default: 'balanced'\r\n backend=backend, device=device)\r\n\r\nkeypoints, scores = wholebody(img)\r\n\r\n# visualize\r\n\r\n# if you want to use black background instead of original image,\r\n# img_show = np.zeros(img_show.shape, dtype=np.uint8)\r\n\r\nimg_show = draw_skeleton(img_show, keypoints, scores, kpt_thr=0.5)\r\n\r\n\r\ncv2.imshow('img', img_show)\r\ncv2.waitKey()\r\n```\r\n\r\n## WebUI\r\n\r\nRun `webui.py`:\r\n\r\n```shell\r\n# Please make sure you have installed gradio\r\n# pip install gradio\r\n\r\npython webui.py\r\n```\r\n\r\n![image](https://github.com/Tau-J/rtmlib/assets/13503330/49ef11a1-a1b5-4a20-a2e1-d49f8be6a25d)\r\n\r\n## APIs\r\n\r\n- Solutions (High-level APIs)\r\n - [Wholebody](/rtmlib/tools/solution/wholebody.py)\r\n - [Body](/rtmlib/tools/solution/body.py)\r\n - [Body_with_feet](/rtmlib/tools/solution/body_with_feet.py)\r\n - [Hand](/rtmlib/tools/solution/hand.py)\r\n - [PoseTracker](/rtmlib/tools/solution/pose_tracker.py)\r\n- Models (Low-level APIs)\r\n - [YOLOX](/rtmlib/tools/object_detection/yolox.py)\r\n - [RTMDet](/rtmlib/tools/object_detection/rtmdet.py)\r\n - [RTMPose](/rtmlib/tools/pose_estimation/rtmpose.py)\r\n - RTMPose for 17 keypoints\r\n - RTMPose for 26 keypoints\r\n - RTMW for 133 keypoints\r\n - DWPose for 133 keypoints\r\n - RTMO for one-stage pose estimation (17 keypoints)\r\n- Visualization\r\n - [draw_bbox](https://github.com/Tau-J/rtmlib/blob/adc69a850f59ba962d81a88cffd3f48cfc5fd1ae/rtmlib/draw.py#L9)\r\n - [draw_skeleton](https://github.com/Tau-J/rtmlib/blob/adc69a850f59ba962d81a88cffd3f48cfc5fd1ae/rtmlib/draw.py#L16)\r\n\r\nFor high-level APIs (`Solution`), you can choose to pass `mode` or `det`+`pose` arguments to specify the detector and pose estimator you want to use.\r\n\r\n```Python\r\n# By mode\r\nwholebody = Wholebody(mode='performance', # 'performance', 'lightweight', 'balanced'. Default: 'balanced'\r\n backend=backend,\r\n device=device)\r\n\r\n# By det and pose\r\nbody = Body(det='https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_x_8xb8-300e_humanart-a39d44ed.zip',\r\n det_input_size=(640, 640),\r\n pose='https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-x_simcc-body7_pt-body7_700e-384x288-71d7b7e9_20230629.zip',\r\n pose_input_size=(288, 384),\r\n backend=backend,\r\n device=device)\r\n```\r\n\r\nFor low-level APIs (`Model`), you can specify the model you want to use by passing the `onnx_model` argument.\r\n\r\n```Python\r\n# By onnx_model (.onnx)\r\npose_model = RTMPose(onnx_model='/path/to/your_model.onnx', # download link or local path\r\n backend=backend, device=device)\r\n\r\n# By onnx_model (.zip)\r\npose_model = RTMPose(onnx_model='https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-m_simcc-body7_pt-body7_420e-256x192-e48f03d0_20230504.zip', # download link or local path\r\n backend=backend, device=device)\r\n```\r\n\r\n## Model Zoo\r\n\r\nBy defaults, rtmlib will automatically download and apply models with the best performance.\r\n\r\nMore models can be found in [RTMPose Model Zoo](https://github.com/open-mmlab/mmpose/tree/dev-1.x/projects/rtmpose).\r\n\r\n### Detectors\r\n\r\n<details open>\r\n<summary><b>Person</b></summary>\r\n\r\nNotes:\r\n\r\n- Models trained on HumanArt can detect both real human and cartoon characters.\r\n- Models trained on COCO can only detect real human.\r\n\r\n| ONNX Model | Input Size | AP (person) | Description |\r\n| :---------------------------------------------------------------------------------------------------------------------------: | :--------: | :---------: | :----------------------: |\r\n| [YOLOX-l](https://drive.google.com/file/d/1w9pXC8tT0p9ndMN-CArp1__b2GbzewWI/view?usp=sharing) | 640x640 | - | trained on COCO |\r\n| [YOLOX-nano](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_nano_8xb8-300e_humanart-40f6f0d0.zip) | 416x416 | 38.9 | trained on HumanArt+COCO |\r\n| [YOLOX-tiny](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_tiny_8xb8-300e_humanart-6f3252f9.zip) | 416x416 | 47.7 | trained on HumanArt+COCO |\r\n| [YOLOX-s](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_s_8xb8-300e_humanart-3ef259a7.zip) | 640x640 | 54.6 | trained on HumanArt+COCO |\r\n| [YOLOX-m](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_m_8xb8-300e_humanart-c2c7a14a.zip) | 640x640 | 59.1 | trained on HumanArt+COCO |\r\n| [YOLOX-l](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_l_8xb8-300e_humanart-ce1d7a62.zip) | 640x640 | 60.2 | trained on HumanArt+COCO |\r\n| [YOLOX-x](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_x_8xb8-300e_humanart-a39d44ed.zip) | 640x640 | 61.3 | trained on HumanArt+COCO |\r\n\r\n</details>\r\n\r\n### Pose Estimators\r\n\r\n<details open>\r\n<summary><b>Body 17 Keypoints</b></summary>\r\n\r\n| ONNX Model | Input Size | AP (COCO) | Description |\r\n| :-------------------------------------------------------------------------------------------------------------------------------------------------: | :--------: | :-------: | :-------------------: |\r\n| [RTMPose-t](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-t_simcc-body7_pt-body7_420e-256x192-026a1439_20230504.zip) | 256x192 | 65.9 | trained on 7 datasets |\r\n| [RTMPose-s](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-s_simcc-body7_pt-body7_420e-256x192-acd4a1ef_20230504.zip) | 256x192 | 69.7 | trained on 7 datasets |\r\n| [RTMPose-m](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-m_simcc-body7_pt-body7_420e-256x192-e48f03d0_20230504.zip) | 256x192 | 74.9 | trained on 7 datasets |\r\n| [RTMPose-l](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-l_simcc-body7_pt-body7_420e-256x192-4dba18fc_20230504.zip) | 256x192 | 76.7 | trained on 7 datasets |\r\n| [RTMPose-l](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-l_simcc-body7_pt-body7_420e-384x288-3f5a1437_20230504.zip) | 384x288 | 78.3 | trained on 7 datasets |\r\n| [RTMPose-x](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-x_simcc-body7_pt-body7_700e-384x288-71d7b7e9_20230629.zip) | 384x288 | 78.8 | trained on 7 datasets |\r\n| [RTMO-s](https://download.openmmlab.com/mmpose/v1/projects/rtmo/onnx_sdk/rtmo-s_8xb32-600e_body7-640x640-dac2bf74_20231211.zip) | 640x640 | 68.6 | trained on 7 datasets |\r\n| [RTMO-m](https://download.openmmlab.com/mmpose/v1/projects/rtmo/onnx_sdk/rtmo-m_16xb16-600e_body7-640x640-39e78cc4_20231211.zip) | 640x640 | 72.6 | trained on 7 datasets |\r\n| [RTMO-l](https://download.openmmlab.com/mmpose/v1/projects/rtmo/onnx_sdk/rtmo-l_16xb16-600e_body7-640x640-b37118ce_20231211.zip) | 640x640 | 74.8 | trained on 7 datasets |\r\n\r\n</details>\r\n\r\n<details open>\r\n<summary><b>Body 26 Keypoints</b></summary>\r\n\r\n| ONNX Model | Input Size | AUC (Body8) | Description |\r\n| :-------------------------------------------------------------------------------------------------------------------------------------------------: | :--------: | :-------: | :-------------------: |\r\n| [RTMPose-t](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-t_simcc-body7_pt-body7-halpe26_700e-256x192-6020f8a6_20230605.zip) | 256x192 | 66.35 | trained on 7 datasets |\r\n| [RTMPose-s](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-s_simcc-body7_pt-body7-halpe26_700e-256x192-7f134165_20230605.zip) | 256x192 | 68.62 | trained on 7 datasets |\r\n| [RTMPose-m](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-m_simcc-body7_pt-body7-halpe26_700e-256x192-4d3e73dd_20230605.zip) | 256x192 | 71.91 | trained on 7 datasets |\r\n| [RTMPose-l](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-l_simcc-body7_pt-body7-halpe26_700e-256x192-2abb7558_20230605.zip) | 256x192 | 73.19 | trained on 7 datasets |\r\n| [RTMPose-m](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-m_simcc-body7_pt-body7-halpe26_700e-384x288-89e6428b_20230605.zip) | 384x288 | 73.56 | trained on 7 datasets |\r\n| [RTMPose-l](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-l_simcc-body7_pt-body7-halpe26_700e-384x288-734182ce_20230605.zip) | 384x288 | 74.38 | trained on 7 datasets |\r\n| [RTMPose-x](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-x_simcc-body7_pt-body7-halpe26_700e-384x288-7fb6e239_20230606.zip) | 384x288 | 74.82 | trained on 7 datasets |\r\n\r\n</details>\r\n\r\n<details open>\r\n<summary><b>WholeBody 133 Keypoints</b></summary>\r\n\r\n| ONNX Model | Input Size | AP (Whole) | Description |\r\n| :------------------------------------------------------------------------------------------------------------------------------------------------: | :--------: | :--: | :-----------------------------: |\r\n| [DWPose-t](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-t_simcc-ucoco_dw-ucoco_270e-256x192-dcf277bf_20230728.zip) | 256x192 | 48.5 | trained on COCO-Wholebody+UBody |\r\n| [DWPose-s](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-s_simcc-ucoco_dw-ucoco_270e-256x192-3fd922c8_20230728.zip) | 256x192 | 53.8 | trained on COCO-Wholebody+UBody |\r\n| [DWPose-m](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-m_simcc-ucoco_dw-ucoco_270e-256x192-c8b76419_20230728.zip) | 256x192 | 60.6 | trained on COCO-Wholebody+UBody |\r\n| [DWPose-l](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-l_simcc-ucoco_dw-ucoco_270e-256x192-4d6dfc62_20230728.zip) | 256x192 | 63.1 | trained on COCO-Wholebody+UBody |\r\n| [DWPose-l](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/rtmpose-l_simcc-ucoco_dw-ucoco_270e-384x288-2438fd99_20230728.zip) | 384x288 | 66.5 | trained on COCO-Wholebody+UBody |\r\n| [RTMW-m](https://download.openmmlab.com/mmpose/v1/projects/rtmw/onnx_sdk/rtmw-dw-m-s_simcc-cocktail14_270e-256x192_20231122.zip) | 256x192 | 58.2 | trained on 14 datasets |\r\n| [RTMW-l](https://download.openmmlab.com/mmpose/v1/projects/rtmw/onnx_sdk/rtmw-dw-x-l_simcc-cocktail14_270e-256x192_20231122.zip) | 256x192 | 66.0 | trained on 14 datasets |\r\n| [RTMW-l](https://download.openmmlab.com/mmpose/v1/projects/rtmw/onnx_sdk/rtmw-dw-x-l_simcc-cocktail14_270e-384x288_20231122.zip) | 384x288 | 70.1 | trained on 14 datasets |\r\n| [RTMW-x](https://download.openmmlab.com/mmpose/v1/projects/rtmw/onnx_sdk/rtmw-x_simcc-cocktail13_pt-ucoco_270e-384x288-0949e3a9_20230925.zip) | 384x288 | 70.2 | trained on 14 datasets |\r\n\r\n</details>\r\n\r\n### Visualization\r\n\r\n| MMPose-style | OpenPose-style |\r\n| :-------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------: |\r\n| <img width=\"357\" alt=\"result\" src=\"https://github.com/Tau-J/rtmlib/assets/13503330/c9e6fbaa-00f0-4961-ac87-d881edca778b\"> | <img width=\"357\" alt=\"result\" src=\"https://github.com/Tau-J/rtmlib/assets/13503330/9afc996a-59e6-4200-a655-59dae10b46c4\"> |\r\n| <img width=\"357\" alt=\"result\" src=\"https://github.com/Tau-J/rtmlib/assets/13503330/b12e5f60-fec0-42a1-b7b6-365e93894fb1\"> | <img width=\"357\" alt=\"result\" src=\"https://github.com/Tau-J/rtmlib/assets/13503330/5acf7431-6ef0-44a8-ae52-9d8c8cb988c9\"> |\r\n| <img width=\"357\" alt=\"result\" src=\"https://github.com/Tau-J/rtmlib/assets/13503330/091b8ce3-32d5-463b-9f41-5c683afa7a11\"> | <img width=\"357\" alt=\"result\" src=\"https://github.com/Tau-J/rtmlib/assets/13503330/4ffc7be1-50d6-44ff-8c6b-22ea8975aad4\"> |\r\n| <img width=\"357\" alt=\"result\" src=\"https://github.com/Tau-J/rtmlib/assets/13503330/6fddfc14-7519-42eb-a7a4-98bf5441f324\"> | <img width=\"357\" alt=\"result\" src=\"https://github.com/Tau-J/rtmlib/assets/13503330/2523e568-e0c3-4c2e-8e54-d1a67100c537\"> |\r\n\r\n### Citation\r\n\r\n```\r\n@misc{rtmlib,\r\n title={rtmlib},\r\n author={Jiang, Tao},\r\n year={2023},\r\n howpublished = {\\url{https://github.com/Tau-J/rtmlib}},\r\n}\r\n\r\n@misc{jiang2023,\r\n doi = {10.48550/ARXIV.2303.07399},\r\n url = {https://arxiv.org/abs/2303.07399},\r\n author = {Jiang, Tao and Lu, Peng and Zhang, Li and Ma, Ningsheng and Han, Rui and Lyu, Chengqi and Li, Yining and Chen, Kai},\r\n keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},\r\n title = {RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose},\r\n publisher = {arXiv},\r\n year = {2023},\r\n copyright = {Creative Commons Attribution 4.0 International}\r\n}\r\n\r\n@misc{lu2023rtmo,\r\n title={{RTMO}: Towards High-Performance One-Stage Real-Time Multi-Person Pose Estimation},\r\n author={Peng Lu and Tao Jiang and Yining Li and Xiangtai Li and Kai Chen and Wenming Yang},\r\n year={2023},\r\n eprint={2312.07526},\r\n archivePrefix={arXiv},\r\n primaryClass={cs.CV}\r\n}\r\n```\r\n\r\n## Acknowledgement\r\n\r\nOur code is based on these repos:\r\n\r\n- [MMPose](https://github.com/open-mmlab/mmpose)\r\n- [RTMPose](https://github.com/open-mmlab/mmpose/tree/dev-1.x/projects/rtmpose)\r\n- [DWPose](https://github.com/IDEA-Research/DWPose/tree/opencv_onnx)\r\n",
"bugtrack_url": null,
"license": "Apache License 2.0",
"summary": "A library for real-time pose estimation.",
"version": "0.0.12",
"project_urls": {
"Homepage": "https://github.com/Tau-J/rtmlib"
},
"split_keywords": [
"pose",
"estimation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9fba2c73c1e70404789527d13c36c98298db4186134294035c0f8bf27a036e72",
"md5": "948793b8cfccfd78961b430bb93949a5",
"sha256": "dd5888666bacca9493f9a9bee0fe63beb7153d0f0dc4c04fc821024a2967e34d"
},
"downloads": -1,
"filename": "rtmlib-0.0.12-py3-none-any.whl",
"has_sig": false,
"md5_digest": "948793b8cfccfd78961b430bb93949a5",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 45919,
"upload_time": "2024-07-10T04:50:41",
"upload_time_iso_8601": "2024-07-10T04:50:41.397366Z",
"url": "https://files.pythonhosted.org/packages/9f/ba/2c73c1e70404789527d13c36c98298db4186134294035c0f8bf27a036e72/rtmlib-0.0.12-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f32e1a8a27c6db42b366488e2f6d89dedfddf6b60f4be60d87c94ac631bf845b",
"md5": "ac564475a2d379a1c8586a84d96d0004",
"sha256": "c774cc05528a0b261cfb8c1a18841d9a0b9a2f7964cbc84ca9431a9c7b1fec4f"
},
"downloads": -1,
"filename": "rtmlib-0.0.12.tar.gz",
"has_sig": false,
"md5_digest": "ac564475a2d379a1c8586a84d96d0004",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 37997,
"upload_time": "2024-07-10T04:50:44",
"upload_time_iso_8601": "2024-07-10T04:50:44.201544Z",
"url": "https://files.pythonhosted.org/packages/f3/2e/1a8a27c6db42b366488e2f6d89dedfddf6b60f4be60d87c94ac631bf845b/rtmlib-0.0.12.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-10 04:50:44",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Tau-J",
"github_project": "rtmlib",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "rtmlib"
}