<h1 align="center">
<a href="https://runlocal.ai">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="./assets/logo_dark_mode.svg">
<source media="(prefers-color-scheme: light)" srcset="./assets/logo_light_mode.svg">
<img alt="runlocal_hub Logo" src="./assets/logo_dark_mode.svg.svg" height="42" style="max-width: 100%;">
</picture>
</a>
</h1>
<p align="center">
Python client for benchmarking and validating ML models on real devices via RunLocal API.
</p>
<p align="center">
<a href="https://pypi.org/project/runlocal-hub/"><img src="https://img.shields.io/pypi/v/runlocal_hub?label=PyPI%20version" alt="PyPI version"></a>
<a href="https://pypi.org/project/runlocal-hub/"><img src="https://img.shields.io/pypi/pyversions/runlocal-hub.svg" alt="Python Versions"></a>
<a href="https://opensource.org/licenses/MIT"><img src="https://img.shields.io/badge/License-MIT-yellow.svg" alt="License: MIT"></a>
</p>
<br/>
<div align="center">
<img src="./assets/benchmark.gif" alt="RunLocal Benchmark Demo" width="800">
</div>
## 🎯 Key Features
- **⚡ Real Hardware Testing** - No simulators or emulators. Test on real devices maintained in our devices lab
- **🌍 Cross-Platform Coverage** - Access MacBooks, iPhones, iPads, Android, and Windows devices from a single API
- **🔧 Multiple ML Formats** - Support for CoreML, ONNX, OpenVINO, TensorFlow Lite, and GGUF models. More frameworks coming soon.
- **📊 Detailed Metrics** - Measure inference time, memory usage, and per-layer performance data
- **🚦 CI/CD Ready** - Integrate performance and accuracy testing into your deployment pipeline
## 🔍 Evaluate Results
All benchmarks performed through the python client can be evaluated on the web platform by logging into your account.
Check out our [public demo](https://edgemeter.runlocal.ai/public/pipelines) for comprehensive benchmark evaluation across different devices and model formats.
## 🛠 Installation
```bash
pip install runlocal-hub
```
### Development Installation
For development or to install from source:
```bash
git clone https://github.com/neuralize-ai/runlocal_hub.git
cd runlocal_hub
pip install -e .
```
## 🔑 Authentication
Get your API key from the [RunLocal dashboard](https://edgemeter.runlocal.ai):
1. Log in to [RunLocal](https://edgemeter.runlocal.ai)
2. Click your avatar → User Settings
3. Navigate to "API Keys"
4. Click "Create New API Key"
5. Save your key securely
```bash
export RUNLOCAL_API_KEY=<your_api_key>
```
## 🕹 Usage Guide
### Simple Benchmark
```python
from runlocal_hub import RunLocalClient, display_benchmark_results
client = RunLocalClient()
# Benchmark on any available device
result = client.benchmark("model.mlpackage")
display_benchmark_results(results)
```
### Device Filtering
Target specific devices with intuitive filters:
```python
from runlocal_hub import DeviceFilters, RunLocalClient
client = RunLocalClient()
# High-end MacBooks with M-series chips
mac_filters = DeviceFilters(
device_name="MacBook",
soc="Apple M", # Matches M1, M2, M3, etc.
ram_min=16, # At least 16GB RAM
year_min=2021 # Recent models only
)
# Latest iPhones with Neural Engine
iphone_filters = DeviceFilters(
device_name="iPhone",
year_min=2022,
compute_units=["CPU_AND_NE"]
)
# Run benchmarks
results = client.benchmark(
"model.mlpackage",
device_filters=[mac_filters, iphone_filters],
count=None # Use all matching devices
)
```
### 🧮 Running Predictions
Test your model with real inputs:
```python
import numpy as np
# Prepare input
image = np.random.rand(1, 3, 224, 224).astype(np.float32)
inputs = {"image": image}
# Run prediction on iPhone
outputs = client.predict(
inputs=inputs,
model_path="model.mlpackage",
device_filters=DeviceFilters(device_name="iPhone 15", compute_units=["CPU_AND_NE"])
)
tensors = outputs["CPU_AND_NE"]
for name, tensor in tensors.items():
print(f" {name}: {tensor.shape} ({tensor.dtype})")
print(f" First values: {tensor.flatten()[:5]}")
```
## 📚 Examples
Check out the example scripts:
- [`bench_example.py`](./bench_example.py) - Simple benchmarking example
- [`predict_example.py`](./predict_example.py) - Prediction with custom inputs, serialised outputs
## 💠 Supported Formats
| Format | Extension | Platforms |
| --------------- | --------------------------- | --------------- |
| CoreML | `.mlpackage`/`.mlmodel` | macOS, iOS |
| ONNX | `.onnx` | Windows, MacOS |
| OpenVINO | directory (`.xml` + `.bin`) | Windows (Intel) |
| TensorFlow Lite | `.tflite` | Android |
| GGUF | `.gguf` | All platforma |
More frameworks coming soon.
## 📜 License
This project is licensed under the MIT License - see the [LICENSE.txt](LICENSE.txt) file for details.
Raw data
{
"_id": null,
"home_page": null,
"name": "runlocal-hub",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "Ciaran O'Rourke <ciaran@runlocal.ai>",
"keywords": "machine-learning, models, benchmarking, coreml, onnx, tflite, openvino, ml-ops, device-testing, model-optimization, inference, neural-networks",
"author": null,
"author_email": "RunLocal <ciaran@runlocal.ai>",
"download_url": "https://files.pythonhosted.org/packages/24/a1/03c44a49351fefd7eb8e4132da1b0292101d1fe5602a52ed7ae5369b5dfe/runlocal_hub-0.1.4.tar.gz",
"platform": null,
"description": "<h1 align=\"center\">\n <a href=\"https://runlocal.ai\">\n <picture>\n <source media=\"(prefers-color-scheme: dark)\" srcset=\"./assets/logo_dark_mode.svg\">\n <source media=\"(prefers-color-scheme: light)\" srcset=\"./assets/logo_light_mode.svg\">\n <img alt=\"runlocal_hub Logo\" src=\"./assets/logo_dark_mode.svg.svg\" height=\"42\" style=\"max-width: 100%;\">\n </picture>\n </a>\n</h1>\n\n<p align=\"center\">\n Python client for benchmarking and validating ML models on real devices via RunLocal API.\n</p>\n\n<p align=\"center\">\n <a href=\"https://pypi.org/project/runlocal-hub/\"><img src=\"https://img.shields.io/pypi/v/runlocal_hub?label=PyPI%20version\" alt=\"PyPI version\"></a>\n <a href=\"https://pypi.org/project/runlocal-hub/\"><img src=\"https://img.shields.io/pypi/pyversions/runlocal-hub.svg\" alt=\"Python Versions\"></a>\n <a href=\"https://opensource.org/licenses/MIT\"><img src=\"https://img.shields.io/badge/License-MIT-yellow.svg\" alt=\"License: MIT\"></a>\n</p>\n\n<br/>\n\n<div align=\"center\">\n <img src=\"./assets/benchmark.gif\" alt=\"RunLocal Benchmark Demo\" width=\"800\">\n</div>\n\n## \ud83c\udfaf Key Features\n\n- **\u26a1 Real Hardware Testing** - No simulators or emulators. Test on real devices maintained in our devices lab\n- **\ud83c\udf0d Cross-Platform Coverage** - Access MacBooks, iPhones, iPads, Android, and Windows devices from a single API\n- **\ud83d\udd27 Multiple ML Formats** - Support for CoreML, ONNX, OpenVINO, TensorFlow Lite, and GGUF models. More frameworks coming soon.\n- **\ud83d\udcca Detailed Metrics** - Measure inference time, memory usage, and per-layer performance data\n- **\ud83d\udea6 CI/CD Ready** - Integrate performance and accuracy testing into your deployment pipeline\n\n## \ud83d\udd0d Evaluate Results\n\nAll benchmarks performed through the python client can be evaluated on the web platform by logging into your account.\nCheck out our [public demo](https://edgemeter.runlocal.ai/public/pipelines) for comprehensive benchmark evaluation across different devices and model formats.\n\n## \ud83d\udee0 Installation\n\n```bash\npip install runlocal-hub\n```\n\n### Development Installation\n\nFor development or to install from source:\n\n```bash\ngit clone https://github.com/neuralize-ai/runlocal_hub.git\ncd runlocal_hub\npip install -e .\n```\n\n## \ud83d\udd11 Authentication\n\nGet your API key from the [RunLocal dashboard](https://edgemeter.runlocal.ai):\n\n1. Log in to [RunLocal](https://edgemeter.runlocal.ai)\n2. Click your avatar \u2192 User Settings\n3. Navigate to \"API Keys\"\n4. Click \"Create New API Key\"\n5. Save your key securely\n\n```bash\nexport RUNLOCAL_API_KEY=<your_api_key>\n```\n\n## \ud83d\udd79 Usage Guide\n\n### Simple Benchmark\n\n```python\nfrom runlocal_hub import RunLocalClient, display_benchmark_results\n\nclient = RunLocalClient()\n\n# Benchmark on any available device\nresult = client.benchmark(\"model.mlpackage\")\ndisplay_benchmark_results(results)\n```\n\n### Device Filtering\n\nTarget specific devices with intuitive filters:\n\n```python\nfrom runlocal_hub import DeviceFilters, RunLocalClient\n\nclient = RunLocalClient()\n\n# High-end MacBooks with M-series chips\nmac_filters = DeviceFilters(\n device_name=\"MacBook\",\n soc=\"Apple M\", # Matches M1, M2, M3, etc.\n ram_min=16, # At least 16GB RAM\n year_min=2021 # Recent models only\n)\n\n# Latest iPhones with Neural Engine\niphone_filters = DeviceFilters(\n device_name=\"iPhone\",\n year_min=2022,\n compute_units=[\"CPU_AND_NE\"]\n)\n\n# Run benchmarks\nresults = client.benchmark(\n \"model.mlpackage\",\n device_filters=[mac_filters, iphone_filters],\n count=None # Use all matching devices\n)\n```\n\n### \ud83e\uddee Running Predictions\n\nTest your model with real inputs:\n\n```python\nimport numpy as np\n\n# Prepare input\nimage = np.random.rand(1, 3, 224, 224).astype(np.float32)\ninputs = {\"image\": image}\n\n# Run prediction on iPhone\noutputs = client.predict(\n inputs=inputs,\n model_path=\"model.mlpackage\",\n device_filters=DeviceFilters(device_name=\"iPhone 15\", compute_units=[\"CPU_AND_NE\"])\n)\n\ntensors = outputs[\"CPU_AND_NE\"]\nfor name, tensor in tensors.items():\n print(f\" {name}: {tensor.shape} ({tensor.dtype})\")\n print(f\" First values: {tensor.flatten()[:5]}\")\n```\n\n## \ud83d\udcda Examples\n\nCheck out the example scripts:\n\n- [`bench_example.py`](./bench_example.py) - Simple benchmarking example\n- [`predict_example.py`](./predict_example.py) - Prediction with custom inputs, serialised outputs\n\n## \ud83d\udca0 Supported Formats\n\n| Format | Extension | Platforms |\n| --------------- | --------------------------- | --------------- |\n| CoreML | `.mlpackage`/`.mlmodel` | macOS, iOS |\n| ONNX | `.onnx` | Windows, MacOS |\n| OpenVINO | directory (`.xml` + `.bin`) | Windows (Intel) |\n| TensorFlow Lite | `.tflite` | Android |\n| GGUF | `.gguf` | All platforma |\n\nMore frameworks coming soon.\n\n## \ud83d\udcdc License\n\nThis project is licensed under the MIT License - see the [LICENSE.txt](LICENSE.txt) file for details.\n",
"bugtrack_url": null,
"license": null,
"summary": "Python client for benchmarking and validating ML models on real devices via RunLocal API",
"version": "0.1.4",
"project_urls": {
"Changelog": "https://github.com/neuralize-ai/runlocal_hub/blob/main/CHANGELOG.md",
"Homepage": "https://runlocal.ai",
"Issues": "https://github.com/neuralize-ai/runlocal_hub/issues",
"Repository": "https://github.com/neuralize-ai/runlocal_hub"
},
"split_keywords": [
"machine-learning",
" models",
" benchmarking",
" coreml",
" onnx",
" tflite",
" openvino",
" ml-ops",
" device-testing",
" model-optimization",
" inference",
" neural-networks"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "29d7d6b077526c391a94a7fb687338e63009fccbf06d8beb4b927c1dc793bd51",
"md5": "ba48394d97f9372e04fb678ef0ea0674",
"sha256": "88148e0dc63688e71850e787ee048c8a1d2f6ef3517f0c971a3452eb2d03e35c"
},
"downloads": -1,
"filename": "runlocal_hub-0.1.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ba48394d97f9372e04fb678ef0ea0674",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 43720,
"upload_time": "2025-07-28T19:06:20",
"upload_time_iso_8601": "2025-07-28T19:06:20.878285Z",
"url": "https://files.pythonhosted.org/packages/29/d7/d6b077526c391a94a7fb687338e63009fccbf06d8beb4b927c1dc793bd51/runlocal_hub-0.1.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "24a103c44a49351fefd7eb8e4132da1b0292101d1fe5602a52ed7ae5369b5dfe",
"md5": "15777bfe9c39f4033c03bc9fdbc4b3c7",
"sha256": "59427ca59b4d63eeefa2857fc00a189010ef50353b5ff483863235aa3f25b2b6"
},
"downloads": -1,
"filename": "runlocal_hub-0.1.4.tar.gz",
"has_sig": false,
"md5_digest": "15777bfe9c39f4033c03bc9fdbc4b3c7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 37446,
"upload_time": "2025-07-28T19:06:22",
"upload_time_iso_8601": "2025-07-28T19:06:22.456579Z",
"url": "https://files.pythonhosted.org/packages/24/a1/03c44a49351fefd7eb8e4132da1b0292101d1fe5602a52ed7ae5369b5dfe/runlocal_hub-0.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-28 19:06:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "neuralize-ai",
"github_project": "runlocal_hub",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "pydantic",
"specs": []
},
{
"name": "requests",
"specs": []
},
{
"name": "rich",
"specs": []
},
{
"name": "numpy",
"specs": []
},
{
"name": "tqdm",
"specs": []
}
],
"lcname": "runlocal-hub"
}