runware


Namerunware JSON
Version 0.4.0 PyPI version JSON
download
home_pagehttps://github.com/runware/sdk-python
SummaryThe Python Runware SDK is used to run image inference with the Runware API, powered by the Runware inference platform. It can be used to generate images with text-to-image and image-to-image. It also allows the use of an existing gallery of models or selecting any model or LoRA from the CivitAI gallery. The API also supports upscaling, background removal, inpainting and outpainting, and a series of other ControlNet models.
upload_time2025-01-14 11:23:58
maintainerNone
docs_urlNone
authorRunware Inc.
requires_python>=3.10
licenseMIT
keywords runware stable diffusion text to image image to text
VCS
bugtrack_url
requirements aiofiles python-dotenv websockets
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Python Runware SDK

The Python Runware SDK is used to run image inference with the Runware API, powered by the Runware inference platform. It can be used to generate images with text-to-image and image-to-image. It also allows the use of an existing gallery of models or selecting any model or LoRA from the CivitAI gallery. The API also supports upscaling, background removal, inpainting and outpainting, and a series of other ControlNet models.

## Get API Access

To use the Python Runware SDK, you need to obtain an API key. Follow these steps to get API access:

1. [Create a free account](https://my.runware.ai/) with [Runware](https://runware.ai/).
2. Once you have created an account, you will receive an API key and trial credits.

**Important**: Please keep your API key private and do not share it with anyone. Treat it as a sensitive credential.

## Documentation

For detailed documentation and API reference, please visit the [Runware Documentation](https://docs.runware.ai/) or refer to the [docs](docs) folder in the repository. The documentation provides comprehensive information about the available classes, methods, and parameters, along with code examples to help you get started with the Runware SDK Python.

## Installation

To install the Python Runware SDK, use the following command:

```bash
pip install runware
```

## Usage

Before using the Python Runware SDK, make sure to set your Runware API key in the environment variable `RUNWARE_API_KEY`. You can do this by creating a `.env` file in your project root and adding the following line:

```bash
RUNWARE_API_KEY = "your_api_key_here"
```

### Generating Images

To generate images using the Runware API, you can use the `imageInference` method of the `Runware` class. Here's an example:

```python
from runware import Runware, IImageInference

async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    request_image = IImageInference(
        positivePrompt="a beautiful sunset over the mountains",
        model="civitai:36520@76907",  
        numberResults=4,  
        negativePrompt="cloudy, rainy",
        height=512,  
        width=512, 
    )

    images = await runware.imageInference(requestImage=request_image)
    for image in images:
        print(f"Image URL: {image.imageURL}")
```

### Enhancing Prompts

To enhance prompts using the Runware API, you can use the `promptEnhance` method of the `Runware` class. Here's an example:

```python
from runware import Runware, IPromptEnhance

async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    prompt = "A beautiful sunset over the mountains"
    prompt_enhancer = IPromptEnhance(
        prompt=prompt,
        promptVersions=3,
        promptMaxLength=64,
    )

    enhanced_prompts = await runware.promptEnhance(promptEnhancer=prompt_enhancer)
    for enhanced_prompt in enhanced_prompts:
        print(enhanced_prompt.text)
```

### Removing Image Background

To remove the background from an image using the Runware API, you can use the `imageBackgroundRemoval` method of the `Runware` class. Here's an example:

```python
from runware import Runware, IImageBackgroundRemoval

async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    image_path = "image.jpg"
    remove_image_background_payload = IImageBackgroundRemoval(image_initiator=image_path)

    processed_images = await runware.imageBackgroundRemoval(
        removeImageBackgroundPayload=remove_image_background_payload
    )
    for image in processed_images:
        print(image.imageURL)
```

### Image-to-Text Conversion

To convert an image to text using the Runware API, you can use the `imageCaption` method of the `Runware` class. Here's an example:

```python
from runware import Runware, IRequestImageToText

async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    image_path = "image.jpg"
    request_image_to_text_payload = IImageCaption(image_initiator=image_path)

    image_to_text = await runware.imageCaption(
        requestImageToText=request_image_to_text_payload
    )
    print(image_to_text.text)
```

### Upscaling Images

To upscale an image using the Runware API, you can use the `imageUpscale` method of the `Runware` class. Here's an example:

```python
from runware import Runware, IImageUpscale

async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    image_path = "image.jpg"
    upscale_factor = 4

    upscale_gan_payload = IImageUpscale(
        inputImage=image_path, upscaleFactor=upscale_factor
    )
    upscaled_images = await runware.imageUpscale(upscaleGanPayload=upscale_gan_payload)
    for image in upscaled_images:
        print(image.imageSrc)
```

### Photo Maker

Use the `photoMaker` method of the `Runware` class. Here's an example:

```python
from runware import Runware, IPhotoMaker
import uuid

async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    request_image = IPhotoMaker(
        model="civitai:101055@128080",
        positivePrompt="img of a beautiful lady in a forest",
        steps=35,
        numberResults=1,
        height=512,
        width=512,
        style="No style",
        strength=40,
        outputFormat="WEBP",
        includeCost=True,
        taskUUID=str(uuid.uuid4()),
        inputImages=[
            "https://im.runware.ai/image/ws/0.5/ii/74723926-22f6-417c-befb-f2058fc88c13.webp",
            "https://im.runware.ai/image/ws/0.5/ii/64acee31-100d-4aa1-a47e-6f8b432e7188.webp",
            "https://im.runware.ai/image/ws/0.5/ii/1b39b0e0-6bf7-4c9a-8134-c0251b5ede01.webp",
            "https://im.runware.ai/image/ws/0.5/ii/f4b4cec3-66d9-4c02-97c5-506b8813182a.webp"
        ],
    )
    
    
     photos = await runware.photoMaker(requestPhotoMaker=request_image)
     for photo in photos:
         print(f"Image URL: {photo.imageURL}")
```

### Generating Images with refiner

To generate images using the Runware API with refiner support, you can use the `imageInference` method of the `Runware` class. Here's an example:

```python
from runware import Runware, IImageInference, IRefiner

async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()
    
    refiner = IRefiner(
        model="civitai:101055@128080",
        startStep=a,
        startStepPercentage=None,
    )

    request_image = IImageInference(
        positivePrompt="a beautiful sunset over the mountains",
        model="civitai:36520@76907",  
        numberResults=4,  
        negativePrompt="cloudy, rainy",
        height=512,  
        width=512, 
        refiner=refiner
    )

    images = await runware.imageInference(requestImage=request_image)
    for image in images:
        print(f"Image URL: {image.imageURL}")
```

### Model Upload

To upload model using the Runware API, you can use the `uploadModel` method of the `Runware` class. Here are examples:

```python
from runware import Runware, IImageInference, IRefiner, IUploadModelCheckPoint


async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    payload = IUploadModelCheckPoint(
        air='qatests:68487@08629',
        name='yWO8IaKwez',
        heroImageUrl='https://raw.githubusercontent.com/adilentiq/test-images/refs/heads/main/image.jpg',
        downloadUrl='https://repo-controlnets-r2.runware.ai/controlnet-zoe-depth-sdxl-1.0.safetensors'
                    '/controlnet-zoe-depth-sdxl-1.0.safetensors.part-001-1',
        uniqueIdentifier='aq2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1234',
        version='1.0',
        tags=['tag1', 'tag2', 'tag2'],
        architecture='flux1d',
        type='base',
        defaultWeight=0.8,
        format='safetensors',
        positiveTriggerWords='my trigger word',
        shortDescription='a model description',
        private=False,
        defaultScheduler='Default',
        comment='some comments if you want to add for internal use',
    )

    uploaded = await runware.modelUpload(payload)
    print(f"Response : {uploaded}")
```

```python
from runware import Runware, IImageInference, IRefiner, IUploadModelLora


async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    payload = IUploadModelLora(
        air='qatests:68487@08629',
        name='yWO8IaKwez',
        heroImageUrl='https://raw.githubusercontent.com/adilentiq/test-images/refs/heads/main/image.jpg',
        downloadUrl='https://repo-controlnets-r2.runware.ai/controlnet-zoe-depth-sdxl-1.0.safetensors'
                    '/controlnet-zoe-depth-sdxl-1.0.safetensors.part-001-1',
        uniqueIdentifier='aq2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1234',
        version='1.0',
        tags=['tag1', 'tag2', 'tag2'],
        architecture='flux1d',
        type='base',
        defaultWeight=0.8,
        format='safetensors',
        positiveTriggerWords='my trigger word',
        shortDescription='a model description',
        private=False,
        comment='some comments if you want to add for internal use',
    )

    uploaded = await runware.modelUpload(payload)
    print(f"Response : {uploaded}")
```

```python
from runware import Runware, IImageInference, IRefiner, IUploadModelControlNet


async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    payload = IUploadModelControlNet(
        air='qatests:68487@08629',
        name='yWO8IaKwez',
        heroImageUrl='https://raw.githubusercontent.com/adilentiq/test-images/refs/heads/main/image.jpg',
        downloadUrl='https://repo-controlnets-r2.runware.ai/controlnet-zoe-depth-sdxl-1.0.safetensors'
                    '/controlnet-zoe-depth-sdxl-1.0.safetensors.part-001-1',
        uniqueIdentifier='aq2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1234',
        version='1.0',
        tags=['tag1', 'tag2', 'tag2'],
        architecture='flux1d',
        type='base',
        format='safetensors',
        positiveTriggerWords='my trigger word',
        shortDescription='a model description',
        private=False,
        comment='some comments if you want to add for internal use',
    )


uploaded = await runware.modelUpload(payload)
print(f"Response : {uploaded}")
```

For more detailed usage and additional examples, please refer to the examples directory.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/runware/sdk-python",
    "name": "runware",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "Runware, stable diffusion, text to image, image to text",
    "author": "Runware Inc.",
    "author_email": "python.sdk@runware.ai",
    "download_url": "https://files.pythonhosted.org/packages/23/90/5bf6ef6b34f64daa90ec6bed3f72fc62ad6fdc5d24a507bf7d79be727a65/runware-0.4.0.tar.gz",
    "platform": null,
    "description": "# Python Runware SDK\n\nThe Python Runware SDK is used to run image inference with the Runware API, powered by the Runware inference platform. It can be used to generate images with text-to-image and image-to-image. It also allows the use of an existing gallery of models or selecting any model or LoRA from the CivitAI gallery. The API also supports upscaling, background removal, inpainting and outpainting, and a series of other ControlNet models.\n\n## Get API Access\n\nTo use the Python Runware SDK, you need to obtain an API key. Follow these steps to get API access:\n\n1. [Create a free account](https://my.runware.ai/) with [Runware](https://runware.ai/).\n2. Once you have created an account, you will receive an API key and trial credits.\n\n**Important**: Please keep your API key private and do not share it with anyone. Treat it as a sensitive credential.\n\n## Documentation\n\nFor detailed documentation and API reference, please visit the [Runware Documentation](https://docs.runware.ai/) or refer to the [docs](docs) folder in the repository. The documentation provides comprehensive information about the available classes, methods, and parameters, along with code examples to help you get started with the Runware SDK Python.\n\n## Installation\n\nTo install the Python Runware SDK, use the following command:\n\n```bash\npip install runware\n```\n\n## Usage\n\nBefore using the Python Runware SDK, make sure to set your Runware API key in the environment variable `RUNWARE_API_KEY`. You can do this by creating a `.env` file in your project root and adding the following line:\n\n```bash\nRUNWARE_API_KEY = \"your_api_key_here\"\n```\n\n### Generating Images\n\nTo generate images using the Runware API, you can use the `imageInference` method of the `Runware` class. Here's an example:\n\n```python\nfrom runware import Runware, IImageInference\n\nasync def main() -> None:\n    runware = Runware(api_key=RUNWARE_API_KEY)\n    await runware.connect()\n\n    request_image = IImageInference(\n        positivePrompt=\"a beautiful sunset over the mountains\",\n        model=\"civitai:36520@76907\",  \n        numberResults=4,  \n        negativePrompt=\"cloudy, rainy\",\n        height=512,  \n        width=512, \n    )\n\n    images = await runware.imageInference(requestImage=request_image)\n    for image in images:\n        print(f\"Image URL: {image.imageURL}\")\n```\n\n### Enhancing Prompts\n\nTo enhance prompts using the Runware API, you can use the `promptEnhance` method of the `Runware` class. Here's an example:\n\n```python\nfrom runware import Runware, IPromptEnhance\n\nasync def main() -> None:\n    runware = Runware(api_key=RUNWARE_API_KEY)\n    await runware.connect()\n\n    prompt = \"A beautiful sunset over the mountains\"\n    prompt_enhancer = IPromptEnhance(\n        prompt=prompt,\n        promptVersions=3,\n        promptMaxLength=64,\n    )\n\n    enhanced_prompts = await runware.promptEnhance(promptEnhancer=prompt_enhancer)\n    for enhanced_prompt in enhanced_prompts:\n        print(enhanced_prompt.text)\n```\n\n### Removing Image Background\n\nTo remove the background from an image using the Runware API, you can use the `imageBackgroundRemoval` method of the `Runware` class. Here's an example:\n\n```python\nfrom runware import Runware, IImageBackgroundRemoval\n\nasync def main() -> None:\n    runware = Runware(api_key=RUNWARE_API_KEY)\n    await runware.connect()\n\n    image_path = \"image.jpg\"\n    remove_image_background_payload = IImageBackgroundRemoval(image_initiator=image_path)\n\n    processed_images = await runware.imageBackgroundRemoval(\n        removeImageBackgroundPayload=remove_image_background_payload\n    )\n    for image in processed_images:\n        print(image.imageURL)\n```\n\n### Image-to-Text Conversion\n\nTo convert an image to text using the Runware API, you can use the `imageCaption` method of the `Runware` class. Here's an example:\n\n```python\nfrom runware import Runware, IRequestImageToText\n\nasync def main() -> None:\n    runware = Runware(api_key=RUNWARE_API_KEY)\n    await runware.connect()\n\n    image_path = \"image.jpg\"\n    request_image_to_text_payload = IImageCaption(image_initiator=image_path)\n\n    image_to_text = await runware.imageCaption(\n        requestImageToText=request_image_to_text_payload\n    )\n    print(image_to_text.text)\n```\n\n### Upscaling Images\n\nTo upscale an image using the Runware API, you can use the `imageUpscale` method of the `Runware` class. Here's an example:\n\n```python\nfrom runware import Runware, IImageUpscale\n\nasync def main() -> None:\n    runware = Runware(api_key=RUNWARE_API_KEY)\n    await runware.connect()\n\n    image_path = \"image.jpg\"\n    upscale_factor = 4\n\n    upscale_gan_payload = IImageUpscale(\n        inputImage=image_path, upscaleFactor=upscale_factor\n    )\n    upscaled_images = await runware.imageUpscale(upscaleGanPayload=upscale_gan_payload)\n    for image in upscaled_images:\n        print(image.imageSrc)\n```\n\n### Photo Maker\n\nUse the `photoMaker` method of the `Runware` class. Here's an example:\n\n```python\nfrom runware import Runware, IPhotoMaker\nimport uuid\n\nasync def main() -> None:\n    runware = Runware(api_key=RUNWARE_API_KEY)\n    await runware.connect()\n\n    request_image = IPhotoMaker(\n        model=\"civitai:101055@128080\",\n        positivePrompt=\"img of a beautiful lady in a forest\",\n        steps=35,\n        numberResults=1,\n        height=512,\n        width=512,\n        style=\"No style\",\n        strength=40,\n        outputFormat=\"WEBP\",\n        includeCost=True,\n        taskUUID=str(uuid.uuid4()),\n        inputImages=[\n            \"https://im.runware.ai/image/ws/0.5/ii/74723926-22f6-417c-befb-f2058fc88c13.webp\",\n            \"https://im.runware.ai/image/ws/0.5/ii/64acee31-100d-4aa1-a47e-6f8b432e7188.webp\",\n            \"https://im.runware.ai/image/ws/0.5/ii/1b39b0e0-6bf7-4c9a-8134-c0251b5ede01.webp\",\n            \"https://im.runware.ai/image/ws/0.5/ii/f4b4cec3-66d9-4c02-97c5-506b8813182a.webp\"\n        ],\n    )\n    \n    \n     photos = await runware.photoMaker(requestPhotoMaker=request_image)\n     for photo in photos:\n         print(f\"Image URL: {photo.imageURL}\")\n```\n\n### Generating Images with refiner\n\nTo generate images using the Runware API with refiner support, you can use the `imageInference` method of the `Runware` class. Here's an example:\n\n```python\nfrom runware import Runware, IImageInference, IRefiner\n\nasync def main() -> None:\n    runware = Runware(api_key=RUNWARE_API_KEY)\n    await runware.connect()\n    \n    refiner = IRefiner(\n        model=\"civitai:101055@128080\",\n        startStep=a,\n        startStepPercentage=None,\n    )\n\n    request_image = IImageInference(\n        positivePrompt=\"a beautiful sunset over the mountains\",\n        model=\"civitai:36520@76907\",  \n        numberResults=4,  \n        negativePrompt=\"cloudy, rainy\",\n        height=512,  \n        width=512, \n        refiner=refiner\n    )\n\n    images = await runware.imageInference(requestImage=request_image)\n    for image in images:\n        print(f\"Image URL: {image.imageURL}\")\n```\n\n### Model Upload\n\nTo upload model using the Runware API, you can use the `uploadModel` method of the `Runware` class. Here are examples:\n\n```python\nfrom runware import Runware, IImageInference, IRefiner, IUploadModelCheckPoint\n\n\nasync def main() -> None:\n    runware = Runware(api_key=RUNWARE_API_KEY)\n    await runware.connect()\n\n    payload = IUploadModelCheckPoint(\n        air='qatests:68487@08629',\n        name='yWO8IaKwez',\n        heroImageUrl='https://raw.githubusercontent.com/adilentiq/test-images/refs/heads/main/image.jpg',\n        downloadUrl='https://repo-controlnets-r2.runware.ai/controlnet-zoe-depth-sdxl-1.0.safetensors'\n                    '/controlnet-zoe-depth-sdxl-1.0.safetensors.part-001-1',\n        uniqueIdentifier='aq2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1234',\n        version='1.0',\n        tags=['tag1', 'tag2', 'tag2'],\n        architecture='flux1d',\n        type='base',\n        defaultWeight=0.8,\n        format='safetensors',\n        positiveTriggerWords='my trigger word',\n        shortDescription='a model description',\n        private=False,\n        defaultScheduler='Default',\n        comment='some comments if you want to add for internal use',\n    )\n\n    uploaded = await runware.modelUpload(payload)\n    print(f\"Response : {uploaded}\")\n```\n\n```python\nfrom runware import Runware, IImageInference, IRefiner, IUploadModelLora\n\n\nasync def main() -> None:\n    runware = Runware(api_key=RUNWARE_API_KEY)\n    await runware.connect()\n\n    payload = IUploadModelLora(\n        air='qatests:68487@08629',\n        name='yWO8IaKwez',\n        heroImageUrl='https://raw.githubusercontent.com/adilentiq/test-images/refs/heads/main/image.jpg',\n        downloadUrl='https://repo-controlnets-r2.runware.ai/controlnet-zoe-depth-sdxl-1.0.safetensors'\n                    '/controlnet-zoe-depth-sdxl-1.0.safetensors.part-001-1',\n        uniqueIdentifier='aq2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1234',\n        version='1.0',\n        tags=['tag1', 'tag2', 'tag2'],\n        architecture='flux1d',\n        type='base',\n        defaultWeight=0.8,\n        format='safetensors',\n        positiveTriggerWords='my trigger word',\n        shortDescription='a model description',\n        private=False,\n        comment='some comments if you want to add for internal use',\n    )\n\n    uploaded = await runware.modelUpload(payload)\n    print(f\"Response : {uploaded}\")\n```\n\n```python\nfrom runware import Runware, IImageInference, IRefiner, IUploadModelControlNet\n\n\nasync def main() -> None:\n    runware = Runware(api_key=RUNWARE_API_KEY)\n    await runware.connect()\n\n    payload = IUploadModelControlNet(\n        air='qatests:68487@08629',\n        name='yWO8IaKwez',\n        heroImageUrl='https://raw.githubusercontent.com/adilentiq/test-images/refs/heads/main/image.jpg',\n        downloadUrl='https://repo-controlnets-r2.runware.ai/controlnet-zoe-depth-sdxl-1.0.safetensors'\n                    '/controlnet-zoe-depth-sdxl-1.0.safetensors.part-001-1',\n        uniqueIdentifier='aq2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1234',\n        version='1.0',\n        tags=['tag1', 'tag2', 'tag2'],\n        architecture='flux1d',\n        type='base',\n        format='safetensors',\n        positiveTriggerWords='my trigger word',\n        shortDescription='a model description',\n        private=False,\n        comment='some comments if you want to add for internal use',\n    )\n\n\nuploaded = await runware.modelUpload(payload)\nprint(f\"Response : {uploaded}\")\n```\n\nFor more detailed usage and additional examples, please refer to the examples directory.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "The Python Runware SDK is used to run image inference with the Runware API, powered by the Runware inference platform. It can be used to generate images with text-to-image and image-to-image. It also allows the use of an existing gallery of models or selecting any model or LoRA from the CivitAI gallery. The API also supports upscaling, background removal, inpainting and outpainting, and a series of other ControlNet models.",
    "version": "0.4.0",
    "project_urls": {
        "Changes": "https://github.com/runware/sdk-python/releases",
        "Code": "https://github.com/runware/sdk-python",
        "Documentation": "https://docs.runware.ai/",
        "Homepage": "https://github.com/runware/sdk-python",
        "Issue tracker": "https://github.com/runware/sdk-python/issues"
    },
    "split_keywords": [
        "runware",
        " stable diffusion",
        " text to image",
        " image to text"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5c923ffe353a249e68485f32274e4f49e775b8c68d478b01862ab59e651fb3bb",
                "md5": "a84d0c8325e5f9411516b1311da31998",
                "sha256": "a1fab5d75bb53b58638b2548c66473a41c04e0d68ef243759b50412a71d6210f"
            },
            "downloads": -1,
            "filename": "runware-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a84d0c8325e5f9411516b1311da31998",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 36590,
            "upload_time": "2025-01-14T11:23:57",
            "upload_time_iso_8601": "2025-01-14T11:23:57.480036Z",
            "url": "https://files.pythonhosted.org/packages/5c/92/3ffe353a249e68485f32274e4f49e775b8c68d478b01862ab59e651fb3bb/runware-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "23905bf6ef6b34f64daa90ec6bed3f72fc62ad6fdc5d24a507bf7d79be727a65",
                "md5": "34cc5d1c2e8b63cf0799f7c85f8e42a6",
                "sha256": "20eac3af9f5519e82d2783b3d5788f229882bd10a9555a4ccc4d5b90d5d0f335"
            },
            "downloads": -1,
            "filename": "runware-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "34cc5d1c2e8b63cf0799f7c85f8e42a6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 36490,
            "upload_time": "2025-01-14T11:23:58",
            "upload_time_iso_8601": "2025-01-14T11:23:58.995163Z",
            "url": "https://files.pythonhosted.org/packages/23/90/5bf6ef6b34f64daa90ec6bed3f72fc62ad6fdc5d24a507bf7d79be727a65/runware-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-14 11:23:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "runware",
    "github_project": "sdk-python",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "aiofiles",
            "specs": [
                [
                    "==",
                    "23.2.1"
                ]
            ]
        },
        {
            "name": "python-dotenv",
            "specs": [
                [
                    "==",
                    "1.0.1"
                ]
            ]
        },
        {
            "name": "websockets",
            "specs": [
                [
                    "==",
                    "12.0"
                ]
            ]
        }
    ],
    "lcname": "runware"
}
        
Elapsed time: 0.39330s