<div align="center">

# RushDB Python SDK



RushDB is an instant database for modern apps and DS/ML ops built on top of Neo4j.
It automates data normalization, manages relationships, and infers data types, enabling developers to focus on building features rather than wrestling with data.
[🌐 Homepage](https://rushdb.com) — [📢 Blog](https://rushdb.com/blog) — [☁️ Platform ](https://app.rushdb.com) — [📚 Docs](https://docs.rushdb.com/python-sdk/records-api) — [🧑💻 Examples](https://github.com/rush-db/examples)
</div>
---
## Installation
Install the RushDB Python SDK via pip:
```sh
pip install rushdb
```
---
## Usage
### **1. Setup SDK**
```python
from rushdb import RushDB
db = RushDB("API_TOKEN", base_url="https://api.rushdb.com")
```
---
### **2. Push any JSON data**
```python
company_data = {
"name": "Google LLC",
"address": "1600 Amphitheatre Parkway, Mountain View, CA 94043, USA",
"foundedAt": "1998-09-04T00:00:00.000Z",
"rating": 4.9,
"DEPARTMENT": [{
"name": "Research & Development",
"description": "Innovating and creating advanced technologies for AI, cloud computing, and consumer devices.",
"PROJECT": [{
"name": "Bard AI",
"description": "A state-of-the-art generative AI model for natural language understanding and creation.",
"active": True,
"budget": 1200000000,
"EMPLOYEE": [{
"name": "Jeff Dean",
"position": "Head of AI Research",
"email": "jeff@google.com",
"dob": "1968-07-16T00:00:00.000Z",
"salary": 3000000
}]
}]
}]
}
db.records.create_many("COMPANY", company_data)
```
This operation will create 4 Records with proper data types and relationships according to this structure:
```cypher
(Record:COMPANY)
-[r0:RUSHDB_DEFAULT_RELATION]->
(Record:DEPARTMENT)
-[r1:RUSHDB_DEFAULT_RELATION]->
(Record:PROJECT)
-[r2:RUSHDB_DEFAULT_RELATION]->
(Record:EMPLOYEE)
```
---
### **3. Find Records by specific criteria**
```python
query = {
"labels": ["EMPLOYEE"],
"where": {
"position": {"$contains": "AI"},
"PROJECT": {
"DEPARTMENT": {
"COMPANY": {
"rating": {"$gte": 4}
}
}
}
}
}
matched_employees = db.records.find(query)
company = db.records.find_uniq("COMPANY", {"where": {"name": "Google LLC"}})
```
---
# Documentation
# RecordsAPI Documentation
The `RecordsAPI` class provides methods for managing records in RushDB. It handles record creation, updates, deletion, searching, and relationship management.
## Methods
### create()
Creates a new record in RushDB.
**Signature:**
```python
def create(
self,
label: str,
data: Dict[str, Any],
options: Optional[Dict[str, bool]] = None,
transaction: Optional[Transaction] = None
) -> Record
```
**Arguments:**
- `label` (str): Label for the record
- `data` (Dict[str, Any]): Record data
- `options` (Optional[Dict[str, bool]]): Optional parsing and response options
- `returnResult` (bool): Whether to return the created record
- `suggestTypes` (bool): Whether to suggest property types
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `Record`: Created record object
**Example:**
```python
# Create a new company record
data = {
"name": "Google LLC",
"address": "1600 Amphitheatre Parkway",
"foundedAt": "1998-09-04T00:00:00.000Z",
"rating": 4.9
}
record = db.records.create(
label="COMPANY",
data=data,
options={"returnResult": True, "suggestTypes": True}
)
```
### create_many()
Creates multiple records in a single operation.
**Signature:**
```python
def create_many(
self,
label: str,
data: Union[Dict[str, Any], List[Dict[str, Any]]],
options: Optional[Dict[str, bool]] = None,
transaction: Optional[Transaction] = None
) -> List[Record]
```
**Arguments:**
- `label` (str): Label for all records
- `data` (Union[Dict[str, Any], List[Dict[str, Any]]]): List or Dict of record data
- `options` (Optional[Dict[str, bool]]): Optional parsing and response options
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `List[Record]`: List of created record objects
**Example:**
```python
# Create multiple company records
data = [
{
"name": "Apple Inc",
"address": "One Apple Park Way",
"foundedAt": "1976-04-01T00:00:00.000Z",
"rating": 4.8
},
{
"name": "Microsoft Corporation",
"address": "One Microsoft Way",
"foundedAt": "1975-04-04T00:00:00.000Z",
"rating": 4.7
}
]
records = db.records.create_many(
label="COMPANY",
data=data,
options={"returnResult": True, "suggestTypes": True}
)
```
### set()
Updates a record by ID, replacing all data.
**Signature:**
```python
def set(
self,
record_id: str,
data: Dict[str, Any],
transaction: Optional[Transaction] = None
) -> Dict[str, str]
```
**Arguments:**
- `record_id` (str): ID of the record to update
- `data` (Dict[str, Any]): New record data
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `Dict[str, str]`: Response data
**Example:**
```python
# Update entire record data
new_data = {
"name": "Updated Company Name",
"rating": 5.0
}
response = db.records.set(
record_id="record-123",
data=new_data
)
```
### update()
Updates specific fields of a record by ID.
**Signature:**
```python
def update(
self,
record_id: str,
data: Dict[str, Any],
transaction: Optional[Transaction] = None
) -> Dict[str, str]
```
**Arguments:**
- `record_id` (str): ID of the record to update
- `data` (Dict[str, Any]): Partial record data to update
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `Dict[str, str]`: Response data
**Example:**
```python
# Update specific fields
updates = {
"rating": 4.8,
"status": "active"
}
response = db.records.update(
record_id="record-123",
data=updates
)
```
### find()
Searches for records matching specified criteria.
**Signature:**
```python
def find(
self,
query: Optional[SearchQuery] = None,
record_id: Optional[str] = None,
transaction: Optional[Transaction] = None
) -> List[Record]
```
**Arguments:**
- `query` (Optional[SearchQuery]): Search query parameters
- `record_id` (Optional[str]): Optional record ID to search from
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `List[Record]`: List of matching records
**Example:**
```python
# Search for records with complex criteria
query = {
"where": {
"$and": [
{"age": {"$gte": 18}},
{"status": "active"},
{"department": "Engineering"}
]
},
"orderBy": {"created_at": "desc"},
"limit": 10
}
records = db.records.find(query=query)
```
### delete()
Deletes records matching a query.
**Signature:**
```python
def delete(
self,
query: SearchQuery,
transaction: Optional[Transaction] = None
) -> Dict[str, str]
```
**Arguments:**
- `query` (SearchQuery): Query to match records for deletion
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `Dict[str, str]`: Response data
**Example:**
```python
# Delete records matching criteria
query = {
"where": {
"status": "inactive",
"lastActive": {"$lt": "2023-01-01"}
}
}
response = db.records.delete(query)
```
### delete_by_id()
Deletes one or more records by ID.
**Signature:**
```python
def delete_by_id(
self,
id_or_ids: Union[str, List[str]],
transaction: Optional[Transaction] = None
) -> Dict[str, str]
```
**Arguments:**
- `id_or_ids` (Union[str, List[str]]): Single ID or list of IDs to delete
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `Dict[str, str]`: Response data
**Example:**
```python
# Delete single record
response = db.records.delete_by_id("record-123")
# Delete multiple records
response = db.records.delete_by_id([
"record-123",
"record-456",
"record-789"
])
```
### attach()
Creates relationships between records.
**Signature:**
```python
def attach(
self,
source: Union[str, Dict[str, Any]],
target: Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]],
options: Optional[RelationshipOptions] = None,
transaction: Optional[Transaction] = None
) -> Dict[str, str]
```
**Arguments:**
- `source` (Union[str, Dict[str, Any]]): Source record ID or data
- `target` (Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]]): Target record(s)
- `options` (Optional[RelationshipOptions]): Relationship options
- `direction` (Optional[Literal["in", "out"]]): Relationship direction
- `type` (Optional[str]): Relationship type
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `Dict[str, str]`: Response data
**Example:**
```python
# Create relationship between records
options = RelationshipOptions(
type="HAS_EMPLOYEE",
direction="out"
)
response = db.records.attach(
source="company-123",
target=["employee-456", "employee-789"],
options=options
)
```
### detach()
Removes relationships between records.
**Signature:**
```python
def detach(
self,
source: Union[str, Dict[str, Any]],
target: Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]],
options: Optional[RelationshipDetachOptions] = None,
transaction: Optional[Transaction] = None
) -> Dict[str, str]
```
**Arguments:**
- `source` (Union[str, Dict[str, Any]]): Source record ID or data
- `target` (Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]]): Target record(s)
- `options` (Optional[RelationshipDetachOptions]): Detach options
- `direction` (Optional[Literal["in", "out"]]): Relationship direction
- `typeOrTypes` (Optional[Union[str, List[str]]]): Relationship type(s)
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `Dict[str, str]`: Response data
**Example:**
```python
# Remove relationships between records
options = RelationshipDetachOptions(
typeOrTypes=["HAS_EMPLOYEE", "MANAGES"],
direction="out"
)
response = db.records.detach(
source="company-123",
target="employee-456",
options=options
)
```
### import_csv()
Imports records from CSV data.
**Signature:**
```python
def import_csv(
self,
label: str,
csv_data: Union[str, bytes],
options: Optional[Dict[str, bool]] = None,
transaction: Optional[Transaction] = None
) -> List[Dict[str, Any]]
```
**Arguments:**
- `label` (str): Label for imported records
- `csv_data` (Union[str, bytes]): CSV data to import
- `options` (Optional[Dict[str, bool]]): Import options
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `List[Dict[str, Any]]`: Imported records data
**Example:**
```python
# Import records from CSV
csv_data = """name,age,department,role
John Doe,30,Engineering,Senior Engineer
Jane Smith,28,Product,Product Manager
Bob Wilson,35,Engineering,Tech Lead"""
records = db.records.import_csv(
label="EMPLOYEE",
csv_data=csv_data,
options={"returnResult": True, "suggestTypes": True}
)
```
---
# Record Class Documentation
The `Record` class represents a record in RushDB and provides methods for manipulating individual records, including updates, relationships, and deletions.
## Class Definition
```python
class Record:
def __init__(self, client: "RushDB", data: Union[Dict[str, Any], None] = None)
```
## Properties
### id
Gets the record's unique identifier.
**Type:** `str`
**Example:**
```python
record = db.records.create("USER", {"name": "John"})
print(record.id) # e.g., "1234abcd-5678-..."
```
### proptypes
Gets the record's property types.
**Type:** `str`
**Example:**
```python
record = db.records.create("USER", {"name": "John", "age": 25})
print(record.proptypes) # Returns property type definitions
```
### label
Gets the record's label.
**Type:** `str`
**Example:**
```python
record = db.records.create("USER", {"name": "John"})
print(record.label) # "USER"
```
### timestamp
Gets the record's creation timestamp from its ID.
**Type:** `int`
**Example:**
```python
record = db.records.create("USER", {"name": "John"})
print(record.timestamp) # Unix timestamp in milliseconds
```
### date
Gets the record's creation date.
**Type:** `datetime`
**Example:**
```python
record = db.records.create("USER", {"name": "John"})
print(record.date) # datetime object
```
## Methods
### set()
Updates all data for the record.
**Signature:**
```python
def set(
self,
data: Dict[str, Any],
transaction: Optional[Transaction] = None
) -> Dict[str, str]
```
**Arguments:**
- `data` (Dict[str, Any]): New record data
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `Dict[str, str]`: Response data
**Example:**
```python
record = db.records.create("USER", {"name": "John"})
response = record.set({
"name": "John Doe",
"email": "john@example.com",
"age": 30
})
```
### update()
Updates specific fields of the record.
**Signature:**
```python
def update(
self,
data: Dict[str, Any],
transaction: Optional[Transaction] = None
) -> Dict[str, str]
```
**Arguments:**
- `data` (Dict[str, Any]): Partial record data to update
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `Dict[str, str]`: Response data
**Example:**
```python
record = db.records.create("USER", {
"name": "John",
"email": "john@example.com"
})
response = record.update({
"email": "john.doe@example.com"
})
```
### attach()
Creates relationships with other records.
**Signature:**
```python
def attach(
self,
target: Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], "Record", List["Record"]],
options: Optional[RelationshipOptions] = None,
transaction: Optional[Transaction] = None
) -> Dict[str, str]
```
**Arguments:**
- `target` (Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]]): Target record(s)
- `options` (Optional[RelationshipOptions]): Relationship options
- `direction` (Optional[Literal["in", "out"]]): Relationship direction
- `type` (Optional[str]): Relationship type
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `Dict[str, str]`: Response data
**Example:**
```python
# Create two records
user = db.records.create("USER", {"name": "John"})
group = db.records.create("GROUP", {"name": "Admins"})
# Attach user to group
response = user.attach(
target=group,
options=RelationshipOptions(
type="BELONGS_TO",
direction="out"
)
)
```
### detach()
Removes relationships with other records.
**Signature:**
```python
def detach(
self,
target: Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], "Record", List["Record"]],
options: Optional[RelationshipDetachOptions] = None,
transaction: Optional[Transaction] = None
) -> Dict[str, str]
```
**Arguments:**
- `target` (Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]]): Target record(s)
- `options` (Optional[RelationshipDetachOptions]): Detach options
- `direction` (Optional[Literal["in", "out"]]): Relationship direction
- `typeOrTypes` (Optional[Union[str, List[str]]]): Relationship type(s)
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `Dict[str, str]`: Response data
**Example:**
```python
# Detach user from group
response = user.detach(
target=group,
options=RelationshipDetachOptions(
typeOrTypes="BELONGS_TO",
direction="out"
)
)
```
### delete()
Deletes the record.
**Signature:**
```python
def delete(
self,
transaction: Optional[Transaction] = None
) -> Dict[str, str]
```
**Arguments:**
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `Dict[str, str]`: Response data
**Example:**
```python
user = db.records.create("USER", {"name": "John"})
response = user.delete()
```
## Complete Usage Example
Here's a comprehensive example demonstrating various Record operations:
```python
# Create a new record
user = db.records.create("USER", {
"name": "John Doe",
"email": "john@example.com",
"age": 30
})
# Access properties
print(f"Record ID: {user.id}")
print(f"Label: {user.label}")
print(f"Created at: {user.date}")
# Update record data
user.update({
"age": 31,
"title": "Senior Developer"
})
# Create related records
department = db.records.create("DEPARTMENT", {
"name": "Engineering"
})
project = db.records.create("PROJECT", {
"name": "Secret Project"
})
# Create relationships
user.attach(
target=department,
options=RelationshipOptions(
type="BELONGS_TO",
direction="out"
)
)
user.attach(
target=project,
options=RelationshipOptions(
type="WORKS_ON",
direction="out"
)
)
# Remove relationship
user.detach(
target=project,
options=RelationshipDetachOptions(
typeOrTypes="WORKS_ON",
direction="out"
)
)
# Delete record
user.delete()
```
## Working with Transactions
Records can be manipulated within transactions for atomic operations:
```python
# Start a transaction
with db.transactions.begin() as transaction:
# Create user
user = db.records.create(
"USER",
{"name": "John Doe"},
transaction=transaction
)
# Update user
user.update(
{"status": "active"},
transaction=transaction
)
# Create and attach department
dept = db.records.create(
"DEPARTMENT",
{"name": "Engineering"},
transaction=transaction
)
user.attach(
target=dept,
options=RelationshipOptions(type="BELONGS_TO"),
transaction=transaction
)
# Transaction will automatically commit if no errors occur
# If an error occurs, it will automatically rollback
```
---
# PropertiesAPI Documentation
The `PropertiesAPI` class provides methods for managing and querying properties in RushDB.
## Class Definition
```python
class PropertiesAPI(BaseAPI):
```
## Methods
### find()
Retrieves a list of properties based on optional search criteria.
**Signature:**
```python
def find(
self,
query: Optional[SearchQuery] = None,
transaction: Optional[Transaction] = None
) -> List[Property]
```
**Arguments:**
- `query` (Optional[SearchQuery]): Search query parameters for filtering properties
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `List[Property]`: List of properties matching the search criteria
**Example:**
```python
# Find all properties
properties = client.properties.find()
# Find properties with specific criteria
query = {
"where": {
"name": {"$startsWith": "user_"}, # Properties starting with 'user_'
"type": "string" # Only string type properties
},
"limit": 10 # Limit to 10 results
}
filtered_properties = client.properties.find(query)
```
### find_by_id()
Retrieves a specific property by its ID.
**Signature:**
```python
def find_by_id(
self,
property_id: str,
transaction: Optional[Transaction] = None
) -> Property
```
**Arguments:**
- `property_id` (str): Unique identifier of the property
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `Property`: Property details
**Example:**
```python
# Retrieve a specific property by ID
property_details = client.properties.find_by_id("prop_123456")
```
### delete()
Deletes a property by its ID.
**Signature:**
```python
def delete(
self,
property_id: str,
transaction: Optional[Transaction] = None
) -> None
```
**Arguments:**
- `property_id` (str): Unique identifier of the property to delete
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `None`
**Example:**
```python
# Delete a property
client.properties.delete("prop_123456")
```
### values()
Retrieves values for a specific property with optional sorting and pagination.
**Signature:**
```python
def values(
self,
property_id: str,
sort: Optional[Literal["asc", "desc"]] = None,
skip: Optional[int] = None,
limit: Optional[int] = None,
transaction: Optional[Transaction] = None
) -> PropertyValuesData
```
**Arguments:**
- `property_id` (str): Unique identifier of the property
- `sort` (Optional[Literal["asc", "desc"]]): Sort order of values
- `skip` (Optional[int]): Number of values to skip (for pagination)
- `limit` (Optional[int]): Maximum number of values to return
- `transaction` (Optional[Transaction]): Optional transaction object
**Returns:**
- `PropertyValuesData`: Property values data, including optional min/max and list of values
**Example:**
```python
# Get property values
values_data = client.properties.values(
property_id="prop_age",
sort="desc", # Sort values in descending order
skip=0, # Start from the first value
limit=100 # Return up to 100 values
)
# Access values
print(values_data.get('values', [])) # List of property values
print(values_data.get('min')) # Minimum value (for numeric properties)
print(values_data.get('max')) # Maximum value (for numeric properties)
```
## Comprehensive Usage Example
```python
# Find all properties
all_properties = client.properties.find()
for prop in all_properties:
print(f"Property ID: {prop['id']}")
print(f"Name: {prop['name']}")
print(f"Type: {prop['type']}")
print(f"Metadata: {prop.get('metadata', 'No metadata')}")
print("---")
# Detailed property search
query = {
"where": {
"type": "number", # Only numeric properties
"name": {"$contains": "score"} # Properties with 'score' in name
},
"limit": 5 # Limit to 5 results
}
numeric_score_properties = client.properties.find(query)
# Get values for a specific property
if numeric_score_properties:
first_prop = numeric_score_properties[0]
prop_values = client.properties.values(
property_id=first_prop['id'],
sort="desc",
limit=50
)
print(f"Values for {first_prop['name']}:")
print(f"Min: {prop_values.get('min')}")
print(f"Max: {prop_values.get('max')}")
# Detailed property examination
detailed_prop = client.properties.find_by_id(first_prop['id'])
print("Detailed Property Info:", detailed_prop)
```
## Property Types and Structures
RushDB supports the following property types:
- `"boolean"`: True/False values
- `"datetime"`: Date and time values
- `"null"`: Null/empty values
- `"number"`: Numeric values
- `"string"`: Text values
### Property Structure Example
```python
property = {
"id": "prop_unique_id",
"name": "user_score",
"type": "number",
"metadata": Optional[str] # Optional additional information
}
property_with_value = {
"id": "prop_unique_id",
"name": "user_score",
"type": "number",
"value": 95.5 # Actual property value
}
```
## Transactions
Properties API methods support optional transactions for atomic operations:
```python
# Using a transaction
with client.transactions.begin() as transaction:
# Perform multiple property-related operations
property_to_delete = client.properties.find(
{"where": {"name": "temp_property"}},
transaction=transaction
)[0]
client.properties.delete(
property_id=property_to_delete['id'],
transaction=transaction
)
# Transaction will automatically commit if no errors occur
```
## Error Handling
When working with the PropertiesAPI, be prepared to handle potential errors:
```python
try:
# Attempt to find or delete a property
property_details = client.properties.find_by_id("non_existent_prop")
except RushDBError as e:
print(f"Error: {e}")
print(f"Error Details: {e.details}")
```
Raw data
{
"_id": null,
"home_page": "https://github.com/rushdb/rushdb-python",
"name": "rushdb",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.8",
"maintainer_email": null,
"keywords": "database, graph database, instant database, instant-database, instantdatabase, instant db, instant-db, instantdb, neo4j, cypher, ai, ai database, etl, data-pipeline, data science, data-science, data management, data-management, machine learning, machine-learning, persistence, db, graph, graphs, graph-database, self-hosted, rush-db, rush db, rushdb",
"author": "RushDB Team",
"author_email": "hi@rushdb.com",
"download_url": "https://files.pythonhosted.org/packages/89/e9/2aec99d763a2b9bc03766e833088019e229c2ca869ac76cbe35d32f332db/rushdb-0.3.0.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n\n\n\n# RushDB Python SDK\n\n\n\n\n\n\nRushDB is an instant database for modern apps and DS/ML ops built on top of Neo4j.\n\nIt automates data normalization, manages relationships, and infers data types, enabling developers to focus on building features rather than wrestling with data.\n\n[\ud83c\udf10 Homepage](https://rushdb.com) \u2014 [\ud83d\udce2 Blog](https://rushdb.com/blog) \u2014 [\u2601\ufe0f Platform ](https://app.rushdb.com) \u2014 [\ud83d\udcda Docs](https://docs.rushdb.com/python-sdk/records-api) \u2014 [\ud83e\uddd1\u200d\ud83d\udcbb Examples](https://github.com/rush-db/examples)\n</div>\n\n---\n\n## Installation\n\nInstall the RushDB Python SDK via pip:\n\n\n```sh\npip install rushdb\n```\n\n---\n\n## Usage\n\n### **1. Setup SDK**\n\n```python\nfrom rushdb import RushDB\n\ndb = RushDB(\"API_TOKEN\", base_url=\"https://api.rushdb.com\")\n```\n\n---\n\n### **2. Push any JSON data**\n\n\n```python\ncompany_data = {\n \"name\": \"Google LLC\",\n \"address\": \"1600 Amphitheatre Parkway, Mountain View, CA 94043, USA\",\n \"foundedAt\": \"1998-09-04T00:00:00.000Z\",\n \"rating\": 4.9,\n \"DEPARTMENT\": [{\n \"name\": \"Research & Development\",\n \"description\": \"Innovating and creating advanced technologies for AI, cloud computing, and consumer devices.\",\n \"PROJECT\": [{\n \"name\": \"Bard AI\",\n \"description\": \"A state-of-the-art generative AI model for natural language understanding and creation.\",\n \"active\": True,\n \"budget\": 1200000000,\n \"EMPLOYEE\": [{\n \"name\": \"Jeff Dean\",\n \"position\": \"Head of AI Research\",\n \"email\": \"jeff@google.com\",\n \"dob\": \"1968-07-16T00:00:00.000Z\",\n \"salary\": 3000000\n }]\n }]\n }]\n}\n\ndb.records.create_many(\"COMPANY\", company_data)\n```\n\nThis operation will create 4 Records with proper data types and relationships according to this structure:\n\n```cypher\n(Record:COMPANY)\n -[r0:RUSHDB_DEFAULT_RELATION]->\n (Record:DEPARTMENT)\n -[r1:RUSHDB_DEFAULT_RELATION]->\n (Record:PROJECT) \n -[r2:RUSHDB_DEFAULT_RELATION]->\n (Record:EMPLOYEE)\n```\n\n---\n\n### **3. Find Records by specific criteria**\n\n```python\nquery = {\n \"labels\": [\"EMPLOYEE\"],\n \"where\": {\n \"position\": {\"$contains\": \"AI\"},\n \"PROJECT\": {\n \"DEPARTMENT\": {\n \"COMPANY\": {\n \"rating\": {\"$gte\": 4}\n }\n }\n }\n }\n}\n\nmatched_employees = db.records.find(query)\n\ncompany = db.records.find_uniq(\"COMPANY\", {\"where\": {\"name\": \"Google LLC\"}})\n```\n\n---\n\n\n# Documentation\n\n# RecordsAPI Documentation\n\nThe `RecordsAPI` class provides methods for managing records in RushDB. It handles record creation, updates, deletion, searching, and relationship management.\n\n## Methods\n\n### create()\n\nCreates a new record in RushDB.\n\n**Signature:**\n```python\ndef create(\n self,\n label: str,\n data: Dict[str, Any],\n options: Optional[Dict[str, bool]] = None,\n transaction: Optional[Transaction] = None\n) -> Record\n```\n\n**Arguments:**\n- `label` (str): Label for the record\n- `data` (Dict[str, Any]): Record data\n- `options` (Optional[Dict[str, bool]]): Optional parsing and response options\n - `returnResult` (bool): Whether to return the created record\n - `suggestTypes` (bool): Whether to suggest property types\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `Record`: Created record object\n\n**Example:**\n```python\n# Create a new company record\ndata = {\n \"name\": \"Google LLC\",\n \"address\": \"1600 Amphitheatre Parkway\",\n \"foundedAt\": \"1998-09-04T00:00:00.000Z\",\n \"rating\": 4.9\n}\n\nrecord = db.records.create(\n label=\"COMPANY\",\n data=data,\n options={\"returnResult\": True, \"suggestTypes\": True}\n)\n```\n\n### create_many()\n\nCreates multiple records in a single operation.\n\n**Signature:**\n```python\ndef create_many(\n self,\n label: str,\n data: Union[Dict[str, Any], List[Dict[str, Any]]],\n options: Optional[Dict[str, bool]] = None,\n transaction: Optional[Transaction] = None\n) -> List[Record]\n```\n\n**Arguments:**\n- `label` (str): Label for all records\n- `data` (Union[Dict[str, Any], List[Dict[str, Any]]]): List or Dict of record data\n- `options` (Optional[Dict[str, bool]]): Optional parsing and response options\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `List[Record]`: List of created record objects\n\n**Example:**\n```python\n# Create multiple company records\ndata = [\n {\n \"name\": \"Apple Inc\",\n \"address\": \"One Apple Park Way\",\n \"foundedAt\": \"1976-04-01T00:00:00.000Z\",\n \"rating\": 4.8\n },\n {\n \"name\": \"Microsoft Corporation\",\n \"address\": \"One Microsoft Way\",\n \"foundedAt\": \"1975-04-04T00:00:00.000Z\",\n \"rating\": 4.7\n }\n]\n\nrecords = db.records.create_many(\n label=\"COMPANY\",\n data=data,\n options={\"returnResult\": True, \"suggestTypes\": True}\n)\n```\n\n### set()\n\nUpdates a record by ID, replacing all data.\n\n**Signature:**\n```python\ndef set(\n self,\n record_id: str,\n data: Dict[str, Any],\n transaction: Optional[Transaction] = None\n) -> Dict[str, str]\n```\n\n**Arguments:**\n- `record_id` (str): ID of the record to update\n- `data` (Dict[str, Any]): New record data\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `Dict[str, str]`: Response data\n\n**Example:**\n```python\n# Update entire record data\nnew_data = {\n \"name\": \"Updated Company Name\",\n \"rating\": 5.0\n}\n\nresponse = db.records.set(\n record_id=\"record-123\",\n data=new_data\n)\n```\n\n### update()\n\nUpdates specific fields of a record by ID.\n\n**Signature:**\n```python\ndef update(\n self,\n record_id: str,\n data: Dict[str, Any],\n transaction: Optional[Transaction] = None\n) -> Dict[str, str]\n```\n\n**Arguments:**\n- `record_id` (str): ID of the record to update\n- `data` (Dict[str, Any]): Partial record data to update\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `Dict[str, str]`: Response data\n\n**Example:**\n```python\n# Update specific fields\nupdates = {\n \"rating\": 4.8,\n \"status\": \"active\"\n}\n\nresponse = db.records.update(\n record_id=\"record-123\",\n data=updates\n)\n```\n\n### find()\n\nSearches for records matching specified criteria.\n\n**Signature:**\n```python\ndef find(\n self,\n query: Optional[SearchQuery] = None,\n record_id: Optional[str] = None,\n transaction: Optional[Transaction] = None\n) -> List[Record]\n```\n\n**Arguments:**\n- `query` (Optional[SearchQuery]): Search query parameters\n- `record_id` (Optional[str]): Optional record ID to search from\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `List[Record]`: List of matching records\n\n**Example:**\n```python\n# Search for records with complex criteria\nquery = {\n \"where\": {\n \"$and\": [\n {\"age\": {\"$gte\": 18}},\n {\"status\": \"active\"},\n {\"department\": \"Engineering\"}\n ]\n },\n \"orderBy\": {\"created_at\": \"desc\"},\n \"limit\": 10\n}\n\nrecords = db.records.find(query=query)\n```\n\n### delete()\n\nDeletes records matching a query.\n\n**Signature:**\n```python\ndef delete(\n self,\n query: SearchQuery,\n transaction: Optional[Transaction] = None\n) -> Dict[str, str]\n```\n\n**Arguments:**\n- `query` (SearchQuery): Query to match records for deletion\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `Dict[str, str]`: Response data\n\n**Example:**\n```python\n# Delete records matching criteria\nquery = {\n \"where\": {\n \"status\": \"inactive\",\n \"lastActive\": {\"$lt\": \"2023-01-01\"}\n }\n}\n\nresponse = db.records.delete(query)\n```\n\n### delete_by_id()\n\nDeletes one or more records by ID.\n\n**Signature:**\n```python\ndef delete_by_id(\n self,\n id_or_ids: Union[str, List[str]],\n transaction: Optional[Transaction] = None\n) -> Dict[str, str]\n```\n\n**Arguments:**\n- `id_or_ids` (Union[str, List[str]]): Single ID or list of IDs to delete\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `Dict[str, str]`: Response data\n\n**Example:**\n```python\n# Delete single record\nresponse = db.records.delete_by_id(\"record-123\")\n\n# Delete multiple records\nresponse = db.records.delete_by_id([\n \"record-123\",\n \"record-456\",\n \"record-789\"\n])\n```\n\n### attach()\n\nCreates relationships between records.\n\n**Signature:**\n```python\ndef attach(\n self,\n source: Union[str, Dict[str, Any]],\n target: Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]],\n options: Optional[RelationshipOptions] = None,\n transaction: Optional[Transaction] = None\n) -> Dict[str, str]\n```\n\n**Arguments:**\n- `source` (Union[str, Dict[str, Any]]): Source record ID or data\n- `target` (Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]]): Target record(s)\n- `options` (Optional[RelationshipOptions]): Relationship options\n - `direction` (Optional[Literal[\"in\", \"out\"]]): Relationship direction\n - `type` (Optional[str]): Relationship type\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `Dict[str, str]`: Response data\n\n**Example:**\n```python\n# Create relationship between records\noptions = RelationshipOptions(\n type=\"HAS_EMPLOYEE\",\n direction=\"out\"\n)\n\nresponse = db.records.attach(\n source=\"company-123\",\n target=[\"employee-456\", \"employee-789\"],\n options=options\n)\n```\n\n### detach()\n\nRemoves relationships between records.\n\n**Signature:**\n```python\ndef detach(\n self,\n source: Union[str, Dict[str, Any]],\n target: Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]],\n options: Optional[RelationshipDetachOptions] = None,\n transaction: Optional[Transaction] = None\n) -> Dict[str, str]\n```\n\n**Arguments:**\n- `source` (Union[str, Dict[str, Any]]): Source record ID or data\n- `target` (Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]]): Target record(s)\n- `options` (Optional[RelationshipDetachOptions]): Detach options\n - `direction` (Optional[Literal[\"in\", \"out\"]]): Relationship direction\n - `typeOrTypes` (Optional[Union[str, List[str]]]): Relationship type(s)\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `Dict[str, str]`: Response data\n\n**Example:**\n```python\n# Remove relationships between records\noptions = RelationshipDetachOptions(\n typeOrTypes=[\"HAS_EMPLOYEE\", \"MANAGES\"],\n direction=\"out\"\n)\n\nresponse = db.records.detach(\n source=\"company-123\",\n target=\"employee-456\",\n options=options\n)\n```\n\n### import_csv()\n\nImports records from CSV data.\n\n**Signature:**\n```python\ndef import_csv(\n self,\n label: str,\n csv_data: Union[str, bytes],\n options: Optional[Dict[str, bool]] = None,\n transaction: Optional[Transaction] = None\n) -> List[Dict[str, Any]]\n```\n\n**Arguments:**\n- `label` (str): Label for imported records\n- `csv_data` (Union[str, bytes]): CSV data to import\n- `options` (Optional[Dict[str, bool]]): Import options\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `List[Dict[str, Any]]`: Imported records data\n\n**Example:**\n```python\n# Import records from CSV\ncsv_data = \"\"\"name,age,department,role\nJohn Doe,30,Engineering,Senior Engineer\nJane Smith,28,Product,Product Manager\nBob Wilson,35,Engineering,Tech Lead\"\"\"\n\nrecords = db.records.import_csv(\n label=\"EMPLOYEE\",\n csv_data=csv_data,\n options={\"returnResult\": True, \"suggestTypes\": True}\n)\n```\n\n---\n\n# Record Class Documentation\n\nThe `Record` class represents a record in RushDB and provides methods for manipulating individual records, including updates, relationships, and deletions.\n\n## Class Definition\n\n```python\nclass Record:\n def __init__(self, client: \"RushDB\", data: Union[Dict[str, Any], None] = None)\n```\n\n## Properties\n\n### id\n\nGets the record's unique identifier.\n\n**Type:** `str`\n\n**Example:**\n```python\nrecord = db.records.create(\"USER\", {\"name\": \"John\"})\nprint(record.id) # e.g., \"1234abcd-5678-...\"\n```\n\n### proptypes\n\nGets the record's property types.\n\n**Type:** `str`\n\n**Example:**\n```python\nrecord = db.records.create(\"USER\", {\"name\": \"John\", \"age\": 25})\nprint(record.proptypes) # Returns property type definitions\n```\n\n### label\n\nGets the record's label.\n\n**Type:** `str`\n\n**Example:**\n```python\nrecord = db.records.create(\"USER\", {\"name\": \"John\"})\nprint(record.label) # \"USER\"\n```\n\n### timestamp\n\nGets the record's creation timestamp from its ID.\n\n**Type:** `int`\n\n**Example:**\n```python\nrecord = db.records.create(\"USER\", {\"name\": \"John\"})\nprint(record.timestamp) # Unix timestamp in milliseconds\n```\n\n### date\n\nGets the record's creation date.\n\n**Type:** `datetime`\n\n**Example:**\n```python\nrecord = db.records.create(\"USER\", {\"name\": \"John\"})\nprint(record.date) # datetime object\n```\n\n## Methods\n\n### set()\n\nUpdates all data for the record.\n\n**Signature:**\n```python\ndef set(\n self,\n data: Dict[str, Any],\n transaction: Optional[Transaction] = None\n) -> Dict[str, str]\n```\n\n**Arguments:**\n- `data` (Dict[str, Any]): New record data\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `Dict[str, str]`: Response data\n\n**Example:**\n```python\nrecord = db.records.create(\"USER\", {\"name\": \"John\"})\nresponse = record.set({\n \"name\": \"John Doe\",\n \"email\": \"john@example.com\",\n \"age\": 30\n})\n```\n\n### update()\n\nUpdates specific fields of the record.\n\n**Signature:**\n```python\ndef update(\n self,\n data: Dict[str, Any],\n transaction: Optional[Transaction] = None\n) -> Dict[str, str]\n```\n\n**Arguments:**\n- `data` (Dict[str, Any]): Partial record data to update\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `Dict[str, str]`: Response data\n\n**Example:**\n```python\nrecord = db.records.create(\"USER\", {\n \"name\": \"John\",\n \"email\": \"john@example.com\"\n})\nresponse = record.update({\n \"email\": \"john.doe@example.com\"\n})\n```\n\n### attach()\n\nCreates relationships with other records.\n\n**Signature:**\n```python\ndef attach(\n self,\n target: Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], \"Record\", List[\"Record\"]],\n options: Optional[RelationshipOptions] = None,\n transaction: Optional[Transaction] = None\n) -> Dict[str, str]\n```\n\n**Arguments:**\n- `target` (Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]]): Target record(s)\n- `options` (Optional[RelationshipOptions]): Relationship options\n - `direction` (Optional[Literal[\"in\", \"out\"]]): Relationship direction\n - `type` (Optional[str]): Relationship type\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `Dict[str, str]`: Response data\n\n**Example:**\n```python\n# Create two records\nuser = db.records.create(\"USER\", {\"name\": \"John\"})\ngroup = db.records.create(\"GROUP\", {\"name\": \"Admins\"})\n\n# Attach user to group\nresponse = user.attach(\n target=group,\n options=RelationshipOptions(\n type=\"BELONGS_TO\",\n direction=\"out\"\n )\n)\n```\n\n### detach()\n\nRemoves relationships with other records.\n\n**Signature:**\n```python\ndef detach(\n self,\n target: Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], \"Record\", List[\"Record\"]],\n options: Optional[RelationshipDetachOptions] = None,\n transaction: Optional[Transaction] = None\n) -> Dict[str, str]\n```\n\n**Arguments:**\n- `target` (Union[str, List[str], Dict[str, Any], List[Dict[str, Any]], Record, List[Record]]): Target record(s)\n- `options` (Optional[RelationshipDetachOptions]): Detach options\n - `direction` (Optional[Literal[\"in\", \"out\"]]): Relationship direction\n - `typeOrTypes` (Optional[Union[str, List[str]]]): Relationship type(s)\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `Dict[str, str]`: Response data\n\n**Example:**\n```python\n# Detach user from group\nresponse = user.detach(\n target=group,\n options=RelationshipDetachOptions(\n typeOrTypes=\"BELONGS_TO\",\n direction=\"out\"\n )\n)\n```\n\n### delete()\n\nDeletes the record.\n\n**Signature:**\n```python\ndef delete(\n self,\n transaction: Optional[Transaction] = None\n) -> Dict[str, str]\n```\n\n**Arguments:**\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `Dict[str, str]`: Response data\n\n**Example:**\n```python\nuser = db.records.create(\"USER\", {\"name\": \"John\"})\nresponse = user.delete()\n```\n\n## Complete Usage Example\n\nHere's a comprehensive example demonstrating various Record operations:\n\n```python\n# Create a new record\nuser = db.records.create(\"USER\", {\n \"name\": \"John Doe\",\n \"email\": \"john@example.com\",\n \"age\": 30\n})\n\n# Access properties\nprint(f\"Record ID: {user.id}\")\nprint(f\"Label: {user.label}\")\nprint(f\"Created at: {user.date}\")\n\n# Update record data\nuser.update({\n \"age\": 31,\n \"title\": \"Senior Developer\"\n})\n\n# Create related records\ndepartment = db.records.create(\"DEPARTMENT\", {\n \"name\": \"Engineering\"\n})\n\nproject = db.records.create(\"PROJECT\", {\n \"name\": \"Secret Project\"\n})\n\n# Create relationships\nuser.attach(\n target=department,\n options=RelationshipOptions(\n type=\"BELONGS_TO\",\n direction=\"out\"\n )\n)\n\nuser.attach(\n target=project,\n options=RelationshipOptions(\n type=\"WORKS_ON\",\n direction=\"out\"\n )\n)\n\n# Remove relationship\nuser.detach(\n target=project,\n options=RelationshipDetachOptions(\n typeOrTypes=\"WORKS_ON\",\n direction=\"out\"\n )\n)\n\n# Delete record\nuser.delete()\n```\n\n## Working with Transactions\n\nRecords can be manipulated within transactions for atomic operations:\n\n```python\n# Start a transaction\nwith db.transactions.begin() as transaction:\n # Create user\n user = db.records.create(\n \"USER\",\n {\"name\": \"John Doe\"},\n transaction=transaction\n )\n \n # Update user\n user.update(\n {\"status\": \"active\"},\n transaction=transaction\n )\n \n # Create and attach department\n dept = db.records.create(\n \"DEPARTMENT\",\n {\"name\": \"Engineering\"},\n transaction=transaction\n )\n \n user.attach(\n target=dept,\n options=RelationshipOptions(type=\"BELONGS_TO\"),\n transaction=transaction\n )\n \n # Transaction will automatically commit if no errors occur\n # If an error occurs, it will automatically rollback\n```\n\n---\n\n# PropertiesAPI Documentation\n\nThe `PropertiesAPI` class provides methods for managing and querying properties in RushDB.\n\n## Class Definition\n\n```python\nclass PropertiesAPI(BaseAPI):\n```\n\n## Methods\n\n### find()\n\nRetrieves a list of properties based on optional search criteria.\n\n**Signature:**\n```python\ndef find(\n self,\n query: Optional[SearchQuery] = None,\n transaction: Optional[Transaction] = None\n) -> List[Property]\n```\n\n**Arguments:**\n- `query` (Optional[SearchQuery]): Search query parameters for filtering properties\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `List[Property]`: List of properties matching the search criteria\n\n**Example:**\n```python\n# Find all properties\nproperties = client.properties.find()\n\n# Find properties with specific criteria\nquery = {\n \"where\": {\n \"name\": {\"$startsWith\": \"user_\"}, # Properties starting with 'user_'\n \"type\": \"string\" # Only string type properties\n },\n \"limit\": 10 # Limit to 10 results\n}\nfiltered_properties = client.properties.find(query)\n```\n\n### find_by_id()\n\nRetrieves a specific property by its ID.\n\n**Signature:**\n```python\ndef find_by_id(\n self,\n property_id: str,\n transaction: Optional[Transaction] = None\n) -> Property\n```\n\n**Arguments:**\n- `property_id` (str): Unique identifier of the property\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `Property`: Property details\n\n**Example:**\n```python\n# Retrieve a specific property by ID\nproperty_details = client.properties.find_by_id(\"prop_123456\")\n```\n\n### delete()\n\nDeletes a property by its ID.\n\n**Signature:**\n```python\ndef delete(\n self,\n property_id: str,\n transaction: Optional[Transaction] = None\n) -> None\n```\n\n**Arguments:**\n- `property_id` (str): Unique identifier of the property to delete\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `None`\n\n**Example:**\n```python\n# Delete a property\nclient.properties.delete(\"prop_123456\")\n```\n\n### values()\n\nRetrieves values for a specific property with optional sorting and pagination.\n\n**Signature:**\n```python\ndef values(\n self,\n property_id: str,\n sort: Optional[Literal[\"asc\", \"desc\"]] = None,\n skip: Optional[int] = None,\n limit: Optional[int] = None,\n transaction: Optional[Transaction] = None\n) -> PropertyValuesData\n```\n\n**Arguments:**\n- `property_id` (str): Unique identifier of the property\n- `sort` (Optional[Literal[\"asc\", \"desc\"]]): Sort order of values\n- `skip` (Optional[int]): Number of values to skip (for pagination)\n- `limit` (Optional[int]): Maximum number of values to return\n- `transaction` (Optional[Transaction]): Optional transaction object\n\n**Returns:**\n- `PropertyValuesData`: Property values data, including optional min/max and list of values\n\n**Example:**\n```python\n# Get property values\nvalues_data = client.properties.values(\n property_id=\"prop_age\",\n sort=\"desc\", # Sort values in descending order\n skip=0, # Start from the first value\n limit=100 # Return up to 100 values\n)\n\n# Access values\nprint(values_data.get('values', [])) # List of property values\nprint(values_data.get('min')) # Minimum value (for numeric properties)\nprint(values_data.get('max')) # Maximum value (for numeric properties)\n```\n\n## Comprehensive Usage Example\n\n```python\n# Find all properties\nall_properties = client.properties.find()\nfor prop in all_properties:\n print(f\"Property ID: {prop['id']}\")\n print(f\"Name: {prop['name']}\")\n print(f\"Type: {prop['type']}\")\n print(f\"Metadata: {prop.get('metadata', 'No metadata')}\")\n print(\"---\")\n\n# Detailed property search\nquery = {\n \"where\": {\n \"type\": \"number\", # Only numeric properties\n \"name\": {\"$contains\": \"score\"} # Properties with 'score' in name\n },\n \"limit\": 5 # Limit to 5 results\n}\nnumeric_score_properties = client.properties.find(query)\n\n# Get values for a specific property\nif numeric_score_properties:\n first_prop = numeric_score_properties[0]\n prop_values = client.properties.values(\n property_id=first_prop['id'],\n sort=\"desc\",\n limit=50\n )\n print(f\"Values for {first_prop['name']}:\")\n print(f\"Min: {prop_values.get('min')}\")\n print(f\"Max: {prop_values.get('max')}\")\n \n # Detailed property examination\n detailed_prop = client.properties.find_by_id(first_prop['id'])\n print(\"Detailed Property Info:\", detailed_prop)\n```\n\n## Property Types and Structures\n\nRushDB supports the following property types:\n- `\"boolean\"`: True/False values\n- `\"datetime\"`: Date and time values\n- `\"null\"`: Null/empty values\n- `\"number\"`: Numeric values\n- `\"string\"`: Text values\n\n### Property Structure Example\n```python\nproperty = {\n \"id\": \"prop_unique_id\",\n \"name\": \"user_score\",\n \"type\": \"number\",\n \"metadata\": Optional[str] # Optional additional information\n}\n\nproperty_with_value = {\n \"id\": \"prop_unique_id\",\n \"name\": \"user_score\",\n \"type\": \"number\",\n \"value\": 95.5 # Actual property value\n}\n```\n\n## Transactions\n\nProperties API methods support optional transactions for atomic operations:\n\n```python\n# Using a transaction\nwith client.transactions.begin() as transaction:\n # Perform multiple property-related operations\n property_to_delete = client.properties.find(\n {\"where\": {\"name\": \"temp_property\"}},\n transaction=transaction\n )[0]\n \n client.properties.delete(\n property_id=property_to_delete['id'],\n transaction=transaction\n )\n # Transaction will automatically commit if no errors occur\n```\n\n## Error Handling\n\nWhen working with the PropertiesAPI, be prepared to handle potential errors:\n\n```python\ntry:\n # Attempt to find or delete a property\n property_details = client.properties.find_by_id(\"non_existent_prop\")\nexcept RushDBError as e:\n print(f\"Error: {e}\")\n print(f\"Error Details: {e.details}\")\n```\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "RushDB Python SDK",
"version": "0.3.0",
"project_urls": {
"Documentation": "https://docs.rushdb.com",
"Homepage": "https://github.com/rushdb/rushdb-python",
"Repository": "https://github.com/rushdb/rushdb-python"
},
"split_keywords": [
"database",
" graph database",
" instant database",
" instant-database",
" instantdatabase",
" instant db",
" instant-db",
" instantdb",
" neo4j",
" cypher",
" ai",
" ai database",
" etl",
" data-pipeline",
" data science",
" data-science",
" data management",
" data-management",
" machine learning",
" machine-learning",
" persistence",
" db",
" graph",
" graphs",
" graph-database",
" self-hosted",
" rush-db",
" rush db",
" rushdb"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "318cdf2fa5e66baf270b6b58f90ce2f661a841324b163f97e208c44d8d1e8817",
"md5": "1d4e276de189329ff6e20058327e1629",
"sha256": "286faf974decd2ecd7c62c56501bc16f1463554eb7770238ec1aa5eb8f025123"
},
"downloads": -1,
"filename": "rushdb-0.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "1d4e276de189329ff6e20058327e1629",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.8",
"size": 20816,
"upload_time": "2025-02-14T18:33:37",
"upload_time_iso_8601": "2025-02-14T18:33:37.134483Z",
"url": "https://files.pythonhosted.org/packages/31/8c/df2fa5e66baf270b6b58f90ce2f661a841324b163f97e208c44d8d1e8817/rushdb-0.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "89e92aec99d763a2b9bc03766e833088019e229c2ca869ac76cbe35d32f332db",
"md5": "d26439a23dd6696eef9fa31da96217b2",
"sha256": "6bacb664798eecd448901d89bfde7f81e58ac2df8bb48d1f119710fdbc2ca31e"
},
"downloads": -1,
"filename": "rushdb-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "d26439a23dd6696eef9fa31da96217b2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.8",
"size": 21122,
"upload_time": "2025-02-14T18:33:39",
"upload_time_iso_8601": "2025-02-14T18:33:39.111280Z",
"url": "https://files.pythonhosted.org/packages/89/e9/2aec99d763a2b9bc03766e833088019e229c2ca869ac76cbe35d32f332db/rushdb-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-14 18:33:39",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "rushdb",
"github_project": "rushdb-python",
"github_not_found": true,
"lcname": "rushdb"
}