sagemaker-feature-store-pyspark-3.3


Namesagemaker-feature-store-pyspark-3.3 JSON
Version 1.1.3 PyPI version JSON
download
home_pageNone
SummaryAmazon SageMaker FeatureStore PySpark Bindings
upload_time2025-02-06 00:52:21
maintainerNone
docs_urlNone
authorAmazon Web Services
requires_pythonNone
licenseApache License 2.0
keywords ml amazon aws ai featurestore sagemaker
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## Overview

SageMaker FeatureStore Spark is a connector library for [Amazon SageMaker FeatureStore](https://aws.amazon.com/sagemaker/feature-store/).

With this spark connector, you can easily ingest data to FeatureGroup's online and offline store from Spark `DataFrame`. Also, this connector contains the functionality to automatically load feature definitions to help with creating feature groups.

## Getting Started

Note: For more information about installation, code samples etc, please reference the FeatureStore AWS [documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/batch-ingestion-spark-connector-setup.html).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "sagemaker-feature-store-pyspark-3.3",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "ML Amazon AWS AI FeatureStore SageMaker",
    "author": "Amazon Web Services",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/9c/b1/39882ec9b71ddc02deaf5a3831d43f32ba9d81c69fd1860cf69c9ccf85eb/sagemaker_feature_store_pyspark_3_3-1.1.3.tar.gz",
    "platform": null,
    "description": "## Overview\n\nSageMaker FeatureStore Spark is a connector library for [Amazon SageMaker FeatureStore](https://aws.amazon.com/sagemaker/feature-store/).\n\nWith this spark connector, you can easily ingest data to FeatureGroup's online and offline store from Spark `DataFrame`. Also, this connector contains the functionality to automatically load feature definitions to help with creating feature groups.\n\n## Getting Started\n\nNote: For more information about installation, code samples etc, please reference the FeatureStore AWS [documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/batch-ingestion-spark-connector-setup.html).\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Amazon SageMaker FeatureStore PySpark Bindings",
    "version": "1.1.3",
    "project_urls": null,
    "split_keywords": [
        "ml",
        "amazon",
        "aws",
        "ai",
        "featurestore",
        "sagemaker"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9cb139882ec9b71ddc02deaf5a3831d43f32ba9d81c69fd1860cf69c9ccf85eb",
                "md5": "919fe91115e559d8cc22e0686a5ff1e6",
                "sha256": "fb8792f706ad5679c8e73dedfca890db64760f7dd8602e9167a8476cf0a41a70"
            },
            "downloads": -1,
            "filename": "sagemaker_feature_store_pyspark_3_3-1.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "919fe91115e559d8cc22e0686a5ff1e6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 49892660,
            "upload_time": "2025-02-06T00:52:21",
            "upload_time_iso_8601": "2025-02-06T00:52:21.110629Z",
            "url": "https://files.pythonhosted.org/packages/9c/b1/39882ec9b71ddc02deaf5a3831d43f32ba9d81c69fd1860cf69c9ccf85eb/sagemaker_feature_store_pyspark_3_3-1.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-06 00:52:21",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "sagemaker-feature-store-pyspark-3.3"
}
        
Elapsed time: 0.38266s