scSLAT


NamescSLAT JSON
Version 0.3.0 PyPI version JSON
download
home_pagehttps://github.com/gao-lab/SLAT
SummaryA graph deep learning based tool to align single cell spatial omics data
upload_time2024-12-20 14:17:15
maintainerNone
docs_urlNone
authorChen-Rui Xia
requires_python>=3.8
licenseMIT
keywords bioinformatics deep-learning graph-neural-network single-cell spatial-omics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![stars-badge](https://img.shields.io/github/stars/gao-lab/SLAT?logo=GitHub&color=yellow)](https://github.com/gao-lab/SLAT/stargazers)
[![pypi-badge](https://img.shields.io/pypi/v/scslat)](https://pypi.org/project/scslat)
[![Downloads](https://static.pepy.tech/badge/scSLAT)](https://pepy.tech/project/scSLAT)
[![build-badge](https://github.com/gao-lab/SLAT/actions/workflows/build.yml/badge.svg)](https://github.com/gao-lab/SLAT/actions/workflows/build.yml)
[![docs-badge](https://readthedocs.org/projects/slat/badge/?version=latest)](https://slat.readthedocs.io/en/latest/?badge=latest)
[![license-badge](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)


# scSLAT: single cell spatial alignment tools
**scSLAT** package implements the **SLAT** (**S**patial **L**inked **A**lignment **T**ool) model to align single cell spatial omics data.

![Model architecture](docs/_static/Model.png)

## Directory structure

```
.
├── scSLAT/                  # Main Python package
├── env/                     # Extra environment
├── data/                    # Data files
├── evaluation/              # SLAT evaluation pipeline
├── benchmark/               # Benchmark pipeline
├── case/                    # Case studies in paper
├── docs/                    # Documentation files
├── resource/                # Other useful resource
├── pyproject.toml           # Python package metadata
└── README.md
```

## [Tutorial](https://slat.readthedocs.io/en/latest/tutorials.html)
Tutorial of `scSLAT` is [here](https://slat.readthedocs.io/en/latest/tutorials.html), if you have any question please open an issue on github

<img src='docs/_static/imgalignment.gif' width='400'>


## Installation

### PyPI
> **Note**
> Installing `scSLAT` within a new [conda environment](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html) is recommended.

> **Warning**
> Old NVIDIA driver may raise error.

First, we create a clean environment and install `scSLAT` from PyPI. Then we also need install dependencies for `pyg` manually via `install_pyg_dependencies`.

```bash
conda create -n scSLAT python=3.11 -y && conda activate scSLAT
pip install scSLAT
install_pyg_dependencies
```

### Docker
You can pull the docker image directly from [Docker Hub](https://hub.docker.com/repository/docker/huhansan666666/slat) or refer to the [`Dockerfile`](Dockerfile) to build it.

``` bash
docker pull huhansan666666/slat:latest
```

### Development version
For development purpose, clone this repo and install:

```bash
git clone git@github.com:gao-lab/SLAT.git && cd SLAT
pip install -e ".[dev,docs]"
install_pyg_dependencies
```


## Reproduce manuscript results
1. Please follow the [`env/README.md`](env/README.md) to install all dependencies. Please checkout the repository to v0.2.1 before install `scSLAT`.
2. Download and pre-process data follow the [`data/README.md`](data/README.md).
3. Whole benchmark and evaluation procedure can be found in [`/benchmark`](benchmark/README.md) and [`/evaluation`](evaluation/README.md), respectively.
4. Every case study is recorded in the [`/case`](case/README.md) directory in the form of jupyter notebook.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/gao-lab/SLAT",
    "name": "scSLAT",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "bioinformatics, deep-learning, graph-neural-network, single-cell, spatial-omics",
    "author": "Chen-Rui Xia",
    "author_email": "xiachenrui@mail.cbi.pku.edu.cn",
    "download_url": "https://files.pythonhosted.org/packages/e1/23/3bc6a48b592b72b661f17ab2a56889ca9383955fff79b481d6092c97b89b/scslat-0.3.0.tar.gz",
    "platform": null,
    "description": "[![stars-badge](https://img.shields.io/github/stars/gao-lab/SLAT?logo=GitHub&color=yellow)](https://github.com/gao-lab/SLAT/stargazers)\n[![pypi-badge](https://img.shields.io/pypi/v/scslat)](https://pypi.org/project/scslat)\n[![Downloads](https://static.pepy.tech/badge/scSLAT)](https://pepy.tech/project/scSLAT)\n[![build-badge](https://github.com/gao-lab/SLAT/actions/workflows/build.yml/badge.svg)](https://github.com/gao-lab/SLAT/actions/workflows/build.yml)\n[![docs-badge](https://readthedocs.org/projects/slat/badge/?version=latest)](https://slat.readthedocs.io/en/latest/?badge=latest)\n[![license-badge](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n\n\n# scSLAT: single cell spatial alignment tools\n**scSLAT** package implements the **SLAT** (**S**patial **L**inked **A**lignment **T**ool) model to align single cell spatial omics data.\n\n![Model architecture](docs/_static/Model.png)\n\n## Directory structure\n\n```\n.\n\u251c\u2500\u2500 scSLAT/                  # Main Python package\n\u251c\u2500\u2500 env/                     # Extra environment\n\u251c\u2500\u2500 data/                    # Data files\n\u251c\u2500\u2500 evaluation/              # SLAT evaluation pipeline\n\u251c\u2500\u2500 benchmark/               # Benchmark pipeline\n\u251c\u2500\u2500 case/                    # Case studies in paper\n\u251c\u2500\u2500 docs/                    # Documentation files\n\u251c\u2500\u2500 resource/                # Other useful resource\n\u251c\u2500\u2500 pyproject.toml           # Python package metadata\n\u2514\u2500\u2500 README.md\n```\n\n## [Tutorial](https://slat.readthedocs.io/en/latest/tutorials.html)\nTutorial of `scSLAT` is [here](https://slat.readthedocs.io/en/latest/tutorials.html), if you have any question please open an issue on github\n\n<img src='docs/_static/imgalignment.gif' width='400'>\n\n\n## Installation\n\n### PyPI\n> **Note**\n> Installing `scSLAT` within a new [conda environment](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html) is recommended.\n\n> **Warning**\n> Old NVIDIA driver may raise error.\n\nFirst, we create a clean environment and install `scSLAT` from PyPI. Then we also need install dependencies for `pyg` manually via `install_pyg_dependencies`.\n\n```bash\nconda create -n scSLAT python=3.11 -y && conda activate scSLAT\npip install scSLAT\ninstall_pyg_dependencies\n```\n\n### Docker\nYou can pull the docker image directly from [Docker Hub](https://hub.docker.com/repository/docker/huhansan666666/slat) or refer to the [`Dockerfile`](Dockerfile) to build it.\n\n``` bash\ndocker pull huhansan666666/slat:latest\n```\n\n### Development version\nFor development purpose, clone this repo and install:\n\n```bash\ngit clone git@github.com:gao-lab/SLAT.git && cd SLAT\npip install -e \".[dev,docs]\"\ninstall_pyg_dependencies\n```\n\n\n## Reproduce manuscript results\n1. Please follow the [`env/README.md`](env/README.md) to install all dependencies. Please checkout the repository to v0.2.1 before install `scSLAT`.\n2. Download and pre-process data follow the [`data/README.md`](data/README.md).\n3. Whole benchmark and evaluation procedure can be found in [`/benchmark`](benchmark/README.md) and [`/evaluation`](evaluation/README.md), respectively.\n4. Every case study is recorded in the [`/case`](case/README.md) directory in the form of jupyter notebook.\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A graph deep learning based tool to align single cell spatial omics data",
    "version": "0.3.0",
    "project_urls": {
        "Documentation": "https://slat.readthedocs.io/en/latest/",
        "Homepage": "https://github.com/gao-lab/SLAT",
        "Repository": "https://github.com/gao-lab/SLAT"
    },
    "split_keywords": [
        "bioinformatics",
        " deep-learning",
        " graph-neural-network",
        " single-cell",
        " spatial-omics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "60ffea0404dc5ad55d54f9f22eae42473291cf53ce68cd814933c031ec458073",
                "md5": "94f19376d0dd6554e6ba4df014524a57",
                "sha256": "63b07846196f11bf67d866f21081ac0a0cc90cb74de2243cc9bd3aa620a4f598"
            },
            "downloads": -1,
            "filename": "scslat-0.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "94f19376d0dd6554e6ba4df014524a57",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 36613,
            "upload_time": "2024-12-20T14:17:14",
            "upload_time_iso_8601": "2024-12-20T14:17:14.234328Z",
            "url": "https://files.pythonhosted.org/packages/60/ff/ea0404dc5ad55d54f9f22eae42473291cf53ce68cd814933c031ec458073/scslat-0.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e1233bc6a48b592b72b661f17ab2a56889ca9383955fff79b481d6092c97b89b",
                "md5": "d4f248c3cc5922c22d6af1c21e23dd64",
                "sha256": "40eccf5307e830798a98605f5f8b6ce397022fa7c3d013ab53861419b0b1cbca"
            },
            "downloads": -1,
            "filename": "scslat-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "d4f248c3cc5922c22d6af1c21e23dd64",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 32138,
            "upload_time": "2024-12-20T14:17:15",
            "upload_time_iso_8601": "2024-12-20T14:17:15.343723Z",
            "url": "https://files.pythonhosted.org/packages/e1/23/3bc6a48b592b72b661f17ab2a56889ca9383955fff79b481d6092c97b89b/scslat-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-20 14:17:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "gao-lab",
    "github_project": "SLAT",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "scslat"
}
        
Elapsed time: 0.47966s