scikit-optimize


Namescikit-optimize JSON
Version 0.10.2 PyPI version JSON
download
home_pageNone
SummarySequential model-based optimization toolbox.
upload_time2024-06-04 19:12:56
maintainerNone
docs_urlNone
authorThe scikit-optimize contributors
requires_pythonNone
licenseBSD 3-clause
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            
|Logo|

|pypi| |conda| |CI Status| |binder| |codecov| |Zenodo DOI|

Scikit-Optimize
===============

Scikit-Optimize, or ``skopt``, is a simple and efficient library for
optimizing (very) expensive and noisy black-box functions. It implements
several methods for sequential model-based optimization. ``skopt`` aims
to be accessible and easy to use in many contexts.

The library is built on top of NumPy, SciPy, and Scikit-Learn.

We do not perform gradient-based optimization. For gradient-based
optimization algorithms look at
``scipy.optimize``
`here <http://docs.scipy.org/doc/scipy/reference/optimize.html>`_.

.. figure:: https://raw.githubusercontent.com/holgern/scikit-optimize/main/media/bo-objective.png
   :alt: Approximated objective

Approximated objective function after 50 iterations of ``gp_minimize``.
Plot made using ``skopt.plots.plot_objective``.

Maintaining the codebase
------------------------
This repo is a copy of the original repositoy at https://github.com/scikit-optimize/scikit-optimize/.
As the original repo is now in read-only mode, i decided to continue the development on it on my own.
I still have credentials for pypi, so I will publish new releases at https://pypi.org/project/scikit-optimize/.
I did my best to include all open PR since 2021 in the new release of scikit-optimize 0.10.

https://scikit-optimize.github.io/ has been moved to http://scikit-optimize.readthedocs.io/.

Important links
---------------

-  Project website https://scikit-optimize.readthedocs.io/
-  Example notebooks - can be found in examples_.
-  `Discussion forum
   <https://github.com/scikit-optimize/scikit-optimize/discussions>`__
-  Issue tracker -
   https://github.com/holgern/scikit-optimize/issues
-  Releases - https://pypi.python.org/pypi/scikit-optimize
-  Conda feedstock - https://github.com/conda-forge/scikit-optimize-feedstock

Install
-------

scikit-optimize requires

* Python >= 3.8
* NumPy (>= 1.20.3)
* SciPy (>= 0.19.1)
* joblib (>= 0.11)
* scikit-learn >= 1.0.0
* matplotlib >= 2.0.0

You can install the latest release with:
::

    pip install scikit-optimize

This installs the essentials. To install plotting functionality,
you can instead do:
::

    pip install 'scikit-optimize[plots]'

This will additionally install Matplotlib.

If you're using Anaconda platform, there is a `conda-forge <https://conda-forge.org/>`_
package of scikit-optimize:
::

    conda install -c conda-forge scikit-optimize

Using conda-forge is probably the easiest way to install scikit-optimize on
Windows.


Getting started
---------------

Find the minimum of the noisy function ``f(x)`` over the range
``-2 < x < 2`` with ``skopt``:

.. code:: python

    import numpy as np
    from skopt import gp_minimize

    def f(x):
        return (np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) +
                np.random.randn() * 0.1)

    res = gp_minimize(f, [(-2.0, 2.0)])


For more control over the optimization loop you can use the ``skopt.Optimizer``
class:

.. code:: python

    from skopt import Optimizer

    opt = Optimizer([(-2.0, 2.0)])

    for i in range(20):
        suggested = opt.ask()
        y = f(suggested)
        opt.tell(suggested, y)
        print('iteration:', i, suggested, y)


Read our `introduction to bayesian
optimization <https://scikit-optimize.readthedocs.io/en/latest/auto_examples/bayesian-optimization.html>`__
and the other examples_.


Development
-----------

The library is still experimental and under development. Checkout
the `next
milestone <https://github.com/holgern/scikit-optimize/milestones>`__
for the plans for the next release or look at some `easy
issues <https://github.com/holgern/scikit-optimize/issues?q=is%3Aissue+is%3Aopen+label%3AEasy>`__
to get started contributing.

The development version can be installed through:

::

    git clone https://github.com/holgern/scikit-optimize.git
    cd scikit-optimize
    pip install -e .

Run all tests by executing ``pytest`` in the top level directory.

To only run the subset of tests with short run time, you can use ``pytest -m 'fast_test'`` (``pytest -m 'slow_test'`` is also possible). To exclude all slow running tests try ``pytest -m 'not slow_test'``.

This is implemented using pytest `attributes <https://docs.pytest.org/en/latest/mark.html>`__. If a tests runs longer than 1 second, it is marked as slow, else as fast.

All contributors are welcome!



Pre-commit-config
-----------------

Installation
~~~~~~~~~~~~

::

    pip install pre-commit


Using homebrew
~~~~~~~~~~~~~~
::

    brew install pre-commit

    pre-commit --version
    pre-commit 2.10.0

Install the git hook scripts
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

::

    pre-commit install


Run against all the files
~~~~~~~~~~~~~~~~~~~~~~~~~
::

    pre-commit run --all-files
    pre-commit run --show-diff-on-failure --color=always --all-files


Update package rev in pre-commit yaml
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::

    pre-commit autoupdate
    pre-commit run --show-diff-on-failure --color=always --all-files


Making a Release
~~~~~~~~~~~~~~~~

The release procedure is almost completely automated. By tagging a new release,
CI will build all required packages and push them to PyPI. To make a release,
create a new issue and work through the following checklist:

* [ ] check if the dependencies in `setup.py` are valid or need unpinning,
* [ ] check that the `doc/whats_new/v0.X.rst` is up-to-date,
* [ ] did the last build of master succeed?
* [ ] create a [new release](https://github.com/holgern/scikit-optimize/releases),
* [ ] ping [conda-forge](https://github.com/conda-forge/scikit-optimize-feedstock).

Before making a release, we usually create a release candidate. If the next
release is v0.X, then the release candidate should be tagged v0.Xrc1.
Mark the release candidate as a "pre-release" on GitHub when you tag it.

Made possible by
----------------

The scikit-optimize project was made possible with the support of

.. image:: https://avatars1.githubusercontent.com/u/18165687?v=4&s=128
   :alt: Wild Tree Tech
   :target: https://wildtreetech.com

.. image:: https://i.imgur.com/lgxboT5.jpg
    :alt: NYU Center for Data Science
    :target: https://cds.nyu.edu/

.. image:: https://i.imgur.com/V1VSIvj.jpg
    :alt: NSF
    :target: https://www.nsf.gov

.. image:: https://i.imgur.com/3enQ6S8.jpg
    :alt: Northrop Grumman
    :target: https://www.northropgrumman.com/Pages/default.aspx

If your employer allows you to work on scikit-optimize during the day and would like
recognition, feel free to add them to the "Made possible by" list.


.. |pypi| image:: https://img.shields.io/pypi/v/scikit-optimize.svg
   :target: https://pypi.python.org/pypi/scikit-optimize
.. |conda| image:: https://anaconda.org/conda-forge/scikit-optimize/badges/version.svg
   :target: https://anaconda.org/conda-forge/scikit-optimize
.. |CI Status| image:: https://github.com/holgern/scikit-optimize/actions/workflows/ci.yml/badge.svg?branch=main
   :target: https://github.com/holgern/scikit-optimize/actions/workflows/ci.yml?query=branch%3Amain
.. |Logo| image:: https://avatars2.githubusercontent.com/u/18578550?v=4&s=80
.. |binder| image:: https://mybinder.org/badge.svg
   :target: https://mybinder.org/v2/gh/holgern/scikit-optimize/main?filepath=examples
.. |Zenodo DOI| image:: https://zenodo.org/badge/768077165.svg
   :target: https://zenodo.org/doi/10.5281/zenodo.10804382
.. |scipy.optimize| replace:: ``scipy.optimize``
.. _scipy.optimize: https://docs.scipy.org/doc/scipy/reference/optimize.html
.. _examples: https://scikit-optimize.readthedocs.io/en/latest/auto_examples/index.html
.. |codecov| image:: https://codecov.io/gh/holgern/scikit-optimize/graph/badge.svg?token=9Mp32drAPj
   :target: https://codecov.io/gh/holgern/scikit-optimize

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "scikit-optimize",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "The scikit-optimize contributors",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/b3/95/1b433b9eb9eb653fb97fd525552fd027886e3812d7d20d843994263340aa/scikit_optimize-0.10.2.tar.gz",
    "platform": null,
    "description": "\n|Logo|\n\n|pypi| |conda| |CI Status| |binder| |codecov| |Zenodo DOI|\n\nScikit-Optimize\n===============\n\nScikit-Optimize, or ``skopt``, is a simple and efficient library for\noptimizing (very) expensive and noisy black-box functions. It implements\nseveral methods for sequential model-based optimization. ``skopt`` aims\nto be accessible and easy to use in many contexts.\n\nThe library is built on top of NumPy, SciPy, and Scikit-Learn.\n\nWe do not perform gradient-based optimization. For gradient-based\noptimization algorithms look at\n``scipy.optimize``\n`here <http://docs.scipy.org/doc/scipy/reference/optimize.html>`_.\n\n.. figure:: https://raw.githubusercontent.com/holgern/scikit-optimize/main/media/bo-objective.png\n   :alt: Approximated objective\n\nApproximated objective function after 50 iterations of ``gp_minimize``.\nPlot made using ``skopt.plots.plot_objective``.\n\nMaintaining the codebase\n------------------------\nThis repo is a copy of the original repositoy at https://github.com/scikit-optimize/scikit-optimize/.\nAs the original repo is now in read-only mode, i decided to continue the development on it on my own.\nI still have credentials for pypi, so I will publish new releases at https://pypi.org/project/scikit-optimize/.\nI did my best to include all open PR since 2021 in the new release of scikit-optimize 0.10.\n\nhttps://scikit-optimize.github.io/ has been moved to http://scikit-optimize.readthedocs.io/.\n\nImportant links\n---------------\n\n-  Project website https://scikit-optimize.readthedocs.io/\n-  Example notebooks - can be found in examples_.\n-  `Discussion forum\n   <https://github.com/scikit-optimize/scikit-optimize/discussions>`__\n-  Issue tracker -\n   https://github.com/holgern/scikit-optimize/issues\n-  Releases - https://pypi.python.org/pypi/scikit-optimize\n-  Conda feedstock - https://github.com/conda-forge/scikit-optimize-feedstock\n\nInstall\n-------\n\nscikit-optimize requires\n\n* Python >= 3.8\n* NumPy (>= 1.20.3)\n* SciPy (>= 0.19.1)\n* joblib (>= 0.11)\n* scikit-learn >= 1.0.0\n* matplotlib >= 2.0.0\n\nYou can install the latest release with:\n::\n\n    pip install scikit-optimize\n\nThis installs the essentials. To install plotting functionality,\nyou can instead do:\n::\n\n    pip install 'scikit-optimize[plots]'\n\nThis will additionally install Matplotlib.\n\nIf you're using Anaconda platform, there is a `conda-forge <https://conda-forge.org/>`_\npackage of scikit-optimize:\n::\n\n    conda install -c conda-forge scikit-optimize\n\nUsing conda-forge is probably the easiest way to install scikit-optimize on\nWindows.\n\n\nGetting started\n---------------\n\nFind the minimum of the noisy function ``f(x)`` over the range\n``-2 < x < 2`` with ``skopt``:\n\n.. code:: python\n\n    import numpy as np\n    from skopt import gp_minimize\n\n    def f(x):\n        return (np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) +\n                np.random.randn() * 0.1)\n\n    res = gp_minimize(f, [(-2.0, 2.0)])\n\n\nFor more control over the optimization loop you can use the ``skopt.Optimizer``\nclass:\n\n.. code:: python\n\n    from skopt import Optimizer\n\n    opt = Optimizer([(-2.0, 2.0)])\n\n    for i in range(20):\n        suggested = opt.ask()\n        y = f(suggested)\n        opt.tell(suggested, y)\n        print('iteration:', i, suggested, y)\n\n\nRead our `introduction to bayesian\noptimization <https://scikit-optimize.readthedocs.io/en/latest/auto_examples/bayesian-optimization.html>`__\nand the other examples_.\n\n\nDevelopment\n-----------\n\nThe library is still experimental and under development. Checkout\nthe `next\nmilestone <https://github.com/holgern/scikit-optimize/milestones>`__\nfor the plans for the next release or look at some `easy\nissues <https://github.com/holgern/scikit-optimize/issues?q=is%3Aissue+is%3Aopen+label%3AEasy>`__\nto get started contributing.\n\nThe development version can be installed through:\n\n::\n\n    git clone https://github.com/holgern/scikit-optimize.git\n    cd scikit-optimize\n    pip install -e .\n\nRun all tests by executing ``pytest`` in the top level directory.\n\nTo only run the subset of tests with short run time, you can use ``pytest -m 'fast_test'`` (``pytest -m 'slow_test'`` is also possible). To exclude all slow running tests try ``pytest -m 'not slow_test'``.\n\nThis is implemented using pytest `attributes <https://docs.pytest.org/en/latest/mark.html>`__. If a tests runs longer than 1 second, it is marked as slow, else as fast.\n\nAll contributors are welcome!\n\n\n\nPre-commit-config\n-----------------\n\nInstallation\n~~~~~~~~~~~~\n\n::\n\n    pip install pre-commit\n\n\nUsing homebrew\n~~~~~~~~~~~~~~\n::\n\n    brew install pre-commit\n\n    pre-commit --version\n    pre-commit 2.10.0\n\nInstall the git hook scripts\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n::\n\n    pre-commit install\n\n\nRun against all the files\n~~~~~~~~~~~~~~~~~~~~~~~~~\n::\n\n    pre-commit run --all-files\n    pre-commit run --show-diff-on-failure --color=always --all-files\n\n\nUpdate package rev in pre-commit yaml\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n::\n\n    pre-commit autoupdate\n    pre-commit run --show-diff-on-failure --color=always --all-files\n\n\nMaking a Release\n~~~~~~~~~~~~~~~~\n\nThe release procedure is almost completely automated. By tagging a new release,\nCI will build all required packages and push them to PyPI. To make a release,\ncreate a new issue and work through the following checklist:\n\n* [ ] check if the dependencies in `setup.py` are valid or need unpinning,\n* [ ] check that the `doc/whats_new/v0.X.rst` is up-to-date,\n* [ ] did the last build of master succeed?\n* [ ] create a [new release](https://github.com/holgern/scikit-optimize/releases),\n* [ ] ping [conda-forge](https://github.com/conda-forge/scikit-optimize-feedstock).\n\nBefore making a release, we usually create a release candidate. If the next\nrelease is v0.X, then the release candidate should be tagged v0.Xrc1.\nMark the release candidate as a \"pre-release\" on GitHub when you tag it.\n\nMade possible by\n----------------\n\nThe scikit-optimize project was made possible with the support of\n\n.. image:: https://avatars1.githubusercontent.com/u/18165687?v=4&s=128\n   :alt: Wild Tree Tech\n   :target: https://wildtreetech.com\n\n.. image:: https://i.imgur.com/lgxboT5.jpg\n    :alt: NYU Center for Data Science\n    :target: https://cds.nyu.edu/\n\n.. image:: https://i.imgur.com/V1VSIvj.jpg\n    :alt: NSF\n    :target: https://www.nsf.gov\n\n.. image:: https://i.imgur.com/3enQ6S8.jpg\n    :alt: Northrop Grumman\n    :target: https://www.northropgrumman.com/Pages/default.aspx\n\nIf your employer allows you to work on scikit-optimize during the day and would like\nrecognition, feel free to add them to the \"Made possible by\" list.\n\n\n.. |pypi| image:: https://img.shields.io/pypi/v/scikit-optimize.svg\n   :target: https://pypi.python.org/pypi/scikit-optimize\n.. |conda| image:: https://anaconda.org/conda-forge/scikit-optimize/badges/version.svg\n   :target: https://anaconda.org/conda-forge/scikit-optimize\n.. |CI Status| image:: https://github.com/holgern/scikit-optimize/actions/workflows/ci.yml/badge.svg?branch=main\n   :target: https://github.com/holgern/scikit-optimize/actions/workflows/ci.yml?query=branch%3Amain\n.. |Logo| image:: https://avatars2.githubusercontent.com/u/18578550?v=4&s=80\n.. |binder| image:: https://mybinder.org/badge.svg\n   :target: https://mybinder.org/v2/gh/holgern/scikit-optimize/main?filepath=examples\n.. |Zenodo DOI| image:: https://zenodo.org/badge/768077165.svg\n   :target: https://zenodo.org/doi/10.5281/zenodo.10804382\n.. |scipy.optimize| replace:: ``scipy.optimize``\n.. _scipy.optimize: https://docs.scipy.org/doc/scipy/reference/optimize.html\n.. _examples: https://scikit-optimize.readthedocs.io/en/latest/auto_examples/index.html\n.. |codecov| image:: https://codecov.io/gh/holgern/scikit-optimize/graph/badge.svg?token=9Mp32drAPj\n   :target: https://codecov.io/gh/holgern/scikit-optimize\n",
    "bugtrack_url": null,
    "license": "BSD 3-clause",
    "summary": "Sequential model-based optimization toolbox.",
    "version": "0.10.2",
    "project_urls": {
        "Bug Tracker": "https://github.com/holgern/scikit-optimize/issues",
        "Homepage": "https://scikit-optimize.readthedocs.io/en/latest/contents.html",
        "Source Code": "https://github.com/holgern/scikit-optimize"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "65cd15c9ebea645cc9860aa71fe0474f4be981f10ed8e19e1fb0ef1027d4966e",
                "md5": "421085da4a979e4fec5e8990c86f0450",
                "sha256": "45bc7e879b086133984721f2f6735a86c085073f6c481c2ec665b5c67b44d723"
            },
            "downloads": -1,
            "filename": "scikit_optimize-0.10.2-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "421085da4a979e4fec5e8990c86f0450",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 107794,
            "upload_time": "2024-06-04T19:12:54",
            "upload_time_iso_8601": "2024-06-04T19:12:54.592302Z",
            "url": "https://files.pythonhosted.org/packages/65/cd/15c9ebea645cc9860aa71fe0474f4be981f10ed8e19e1fb0ef1027d4966e/scikit_optimize-0.10.2-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b3951b433b9eb9eb653fb97fd525552fd027886e3812d7d20d843994263340aa",
                "md5": "b1f0f2000b6a98b3365f0ffa4547627f",
                "sha256": "00a3d91bf9015e292b6e7aaefe7e6cb95e8d25ce19adafd2cd88849e1a0b0da0"
            },
            "downloads": -1,
            "filename": "scikit_optimize-0.10.2.tar.gz",
            "has_sig": false,
            "md5_digest": "b1f0f2000b6a98b3365f0ffa4547627f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 86202,
            "upload_time": "2024-06-04T19:12:56",
            "upload_time_iso_8601": "2024-06-04T19:12:56.879458Z",
            "url": "https://files.pythonhosted.org/packages/b3/95/1b433b9eb9eb653fb97fd525552fd027886e3812d7d20d843994263340aa/scikit_optimize-0.10.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-04 19:12:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "holgern",
    "github_project": "scikit-optimize",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "requirements": [],
    "lcname": "scikit-optimize"
}
        
Elapsed time: 0.51086s