scipion-em-modelangelo


Namescipion-em-modelangelo JSON
Version 3.1.1 PyPI version JSON
download
home_pagehttps://github.com/scipion-em/scipion-em-modelangelo
SummaryScipion plugin for modelangelo.
upload_time2024-04-10 09:44:41
maintainerNone
docs_urlNone
authorPablo Conesa
requires_pythonNone
licenseNone
keywords scipion cryoem imageprocessing modelling modelangelo scipion-3.0
VCS
bugtrack_url
requirements scipion-pyworkflow scipion-em
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ====================
Modelangelo   plugin
====================

This plugin provide a wrapper for `Model angelo <https://github.com/3dem/model-angelo>`_ which allows *de novo* atomic modelling


Installation
------------

a) Stable version

.. code-block::

    scipion3 installp -p scipion-em-modelangelo

b) Developer's version

    * download repository

    .. code-block::

        git clone https://github.com/scipion-em/scipion-em-modelangelo.git

    * install

    .. code-block::

        scipion3 installp -p path_to_scipion-em-modelangelo --devel

Modelangelo will be installed automatically with the plugin using a Conda environment.


Configuration variables
.......................

There are some variables related to the model-angelo installation. If you have installed
model-angelo within Scipion, you may define `MODEL_ANGELO_ENV_ACTIVATION` for specifying
how to activate the environment. This variable with be used together with the general
conda activation to generate the final model-angelo command. For example:

.. code-block::

    MODEL_ANGELO_ENV_ACTIVATION = conda activate model_angelo

If this variable is not defined, a default value will be provided that will work if the
latest version is installed.

If model-angelo is installed already outside Scipion, one could define `MODEL_ANGELO_ACTIVATION`.
This variable will provide an activation (or load) command that can be anything and the Scipion
conda activate will not be prepended. For example (loading model-angelo as a module):

.. code-block::

    MODEL_ANGELO_ACTIVATION = module load model-angelo/main

If you need to use CUDA different from the one used during Scipion installation (defined by *CUDA_LIB*), you can add *MODEL_ANGELO_CUDA_LIB* variable to the config file.

Protocols
---------

* Model builder

Tests
-----

* scipion3 tests modelangelo.tests.tests_model_angelo.TestModelAngel




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/scipion-em/scipion-em-modelangelo",
    "name": "scipion-em-modelangelo",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "scipion cryoem imageprocessing modelling modelangelo scipion-3.0",
    "author": "Pablo Conesa",
    "author_email": "scipion@cnb.cnb.csic.es",
    "download_url": "https://files.pythonhosted.org/packages/c8/dc/b50ea8da175ece08921b4ac6f63c1b6a5b7ae29a62d43b641e2f48a265b4/scipion-em-modelangelo-3.1.1.tar.gz",
    "platform": null,
    "description": "====================\nModelangelo   plugin\n====================\n\nThis plugin provide a wrapper for `Model angelo <https://github.com/3dem/model-angelo>`_ which allows *de novo* atomic modelling\n\n\nInstallation\n------------\n\na) Stable version\n\n.. code-block::\n\n    scipion3 installp -p scipion-em-modelangelo\n\nb) Developer's version\n\n    * download repository\n\n    .. code-block::\n\n        git clone https://github.com/scipion-em/scipion-em-modelangelo.git\n\n    * install\n\n    .. code-block::\n\n        scipion3 installp -p path_to_scipion-em-modelangelo --devel\n\nModelangelo will be installed automatically with the plugin using a Conda environment.\n\n\nConfiguration variables\n.......................\n\nThere are some variables related to the model-angelo installation. If you have installed\nmodel-angelo within Scipion, you may define `MODEL_ANGELO_ENV_ACTIVATION` for specifying\nhow to activate the environment. This variable with be used together with the general\nconda activation to generate the final model-angelo command. For example:\n\n.. code-block::\n\n    MODEL_ANGELO_ENV_ACTIVATION = conda activate model_angelo\n\nIf this variable is not defined, a default value will be provided that will work if the\nlatest version is installed.\n\nIf model-angelo is installed already outside Scipion, one could define `MODEL_ANGELO_ACTIVATION`.\nThis variable will provide an activation (or load) command that can be anything and the Scipion\nconda activate will not be prepended. For example (loading model-angelo as a module):\n\n.. code-block::\n\n    MODEL_ANGELO_ACTIVATION = module load model-angelo/main\n\nIf you need to use CUDA different from the one used during Scipion installation (defined by *CUDA_LIB*), you can add *MODEL_ANGELO_CUDA_LIB* variable to the config file.\n\nProtocols\n---------\n\n* Model builder\n\nTests\n-----\n\n* scipion3 tests modelangelo.tests.tests_model_angelo.TestModelAngel\n\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Scipion plugin for modelangelo.",
    "version": "3.1.1",
    "project_urls": {
        "Bug Reports": "https://github.com/scipion-em/scipion-em-modelangelo/issues",
        "Homepage": "https://github.com/scipion-em/scipion-em-modelangelo",
        "Source": "https://github.com/scipion-em/scipion-em-modelangelo/"
    },
    "split_keywords": [
        "scipion",
        "cryoem",
        "imageprocessing",
        "modelling",
        "modelangelo",
        "scipion-3.0"
    ],
    "urls": [
        {
            "comment_text": "scipion-3.0",
            "digests": {
                "blake2b_256": "2a7a86114a4838c45212e4419da07ca81123d5b5565c673b644ab16b1ae0fdb3",
                "md5": "e00d119f911b6e347cea83bfd07284d0",
                "sha256": "5f351a313dffd9655b6fe99314cf0c25b161b60eb928c3ed3117acba3f129f24"
            },
            "downloads": -1,
            "filename": "scipion_em_modelangelo-3.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e00d119f911b6e347cea83bfd07284d0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 51137,
            "upload_time": "2024-04-10T09:44:39",
            "upload_time_iso_8601": "2024-04-10T09:44:39.501199Z",
            "url": "https://files.pythonhosted.org/packages/2a/7a/86114a4838c45212e4419da07ca81123d5b5565c673b644ab16b1ae0fdb3/scipion_em_modelangelo-3.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "scipion-3.0",
            "digests": {
                "blake2b_256": "c8dcb50ea8da175ece08921b4ac6f63c1b6a5b7ae29a62d43b641e2f48a265b4",
                "md5": "286f3f93e7ba2df6ec0d30cddad21524",
                "sha256": "b143ca3176d8c3666bed880bbe6a6680f0a76071111afa3e1d671464d2119566"
            },
            "downloads": -1,
            "filename": "scipion-em-modelangelo-3.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "286f3f93e7ba2df6ec0d30cddad21524",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 48330,
            "upload_time": "2024-04-10T09:44:41",
            "upload_time_iso_8601": "2024-04-10T09:44:41.259797Z",
            "url": "https://files.pythonhosted.org/packages/c8/dc/b50ea8da175ece08921b4ac6f63c1b6a5b7ae29a62d43b641e2f48a265b4/scipion-em-modelangelo-3.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-10 09:44:41",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "scipion-em",
    "github_project": "scipion-em-modelangelo",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "scipion-pyworkflow",
            "specs": []
        },
        {
            "name": "scipion-em",
            "specs": []
        }
    ],
    "lcname": "scipion-em-modelangelo"
}
        
Elapsed time: 1.01453s