scslat


Namescslat JSON
Version 0.2.1 PyPI version JSON
download
home_pagehttps://github.com/gao-lab/SLAT
SummaryA graph deep learning based tool to align single cell spatial omics data
upload_time2023-04-17 08:54:00
maintainer
docs_urlNone
authorChen-Rui Xia
requires_python>=3.8,<4.0
licenseMIT
keywords bioinformatics deep-learning graph-neural-network single-cell spatial-omics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![stars-badge](https://img.shields.io/github/stars/gao-lab/SLAT?logo=GitHub&color=yellow)](https://github.com/gao-lab/SLAT/stargazers)
[![dev-badge](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/xiachenrui/bc835db052fde5bd731a09270b42006c/raw/slat_version.json)](https://gist.github.com/xiachenrui/bc835db052fde5bd731a09270b42006c)
[![build-badge](https://github.com/gao-lab/SLAT/actions/workflows/build.yml/badge.svg)](https://github.com/gao-lab/SLAT/actions/workflows/build.yml)
[![license-badge](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![docs-badge](https://readthedocs.org/projects/slat/badge/?version=latest)](https://slat.readthedocs.io/en/latest/?badge=latest)
[![pypi-badge](https://img.shields.io/pypi/v/scslat)](https://pypi.org/project/scslat)
<!-- [![conda-badge](https://anaconda.org/bioconda/<name>/badges/version.svg)](https://anaconda.org/bioconda/<name>) -->

# scSLAT: single cell spatial alignment tools
**scSLAT** package implements the **SLAT** (**S**patial **L**inked **A**lignment **T**ool) model to align single cell spatial omics data.

![Model architecture](docs/_static/Model.png)

## Directory structure

```
.
├── scSLAT/                  # Main Python package
├── env/                     # Extra environment
├── data/                    # Data files
├── evaluation/              # SLAT evaluation pipeline
├── benchmark/               # Benchmark pipeline
├── case/                    # Case studies in paper
├── docs/                    # Documentation files
├── resource/                # Other useful resource 
├── pyproject.toml           # Python package metadata
└── README.md
```

## Tutorial
Tutorial of `scSLAT` is [here](https://slat.readthedocs.io/en/latest/tutorials.html), if you have any question please open an issue on github

<img src='docs/_static/imgalignment.gif' width='400'>


## Installation

### Docker
Dockerfile of `scSLAT` is available at [`env/Dockerfile`](env/Dockerfile). You can also pull the docker image directly from [here](https://hub.docker.com/repository/docker/huhansan666666/slat) by:

``` bash
docker pull huhansan666666/slat:latest
```

### PyPI
> **Note**
> Installing `scSLAT` within a new [conda environment](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html) is recommended.

First, we create a clean environment and install `scSLAT` from PyPI. Then we also need install dependencies for `pyg` manually. We default install with CUDA 11.7. Please refer [here](https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html#quick-start) for CPU version or different CUDA versions.

> **Warning**
> old NVIDIA driver may raise error, please update NVIDIA driver to the latest version.

```bash
conda create -n scSLAT python=3.8 -y && conda activate scSLAT
pip install scSLAT
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.0.0+cu117.html
```

### Development version
For development purpose, clone this repo and install:

```bash
git clone git@github.com:gao-lab/SLAT.git
cd SLAT
pip install -e ".[dev,docs]"
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.0.0+cu117.html
```

### Conda (Ongoing)
We plan to provide a conda package of `scSLAT` in the near future.


## Reproduce manuscript results
1. Please follow the [`env/README.md`](env/README.md) to install all dependencies. Please checkout the repository to v0.2.1 before install `scSLAT`.
2. Download and pre-process data follow the [`data/README.md`](data/README.md).
3. Whole benchmark and evaluation procedure can be found in [`/benchmark`](benchmark/README.md) and [`/evaluation`](evaluation/README.md), respectively.
4. Every case study is recorded in the [`/case`](case/README.md) directory in the form of jupyter notebook.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/gao-lab/SLAT",
    "name": "scslat",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8,<4.0",
    "maintainer_email": "",
    "keywords": "bioinformatics,deep-learning,graph-neural-network,single-cell,spatial-omics",
    "author": "Chen-Rui Xia",
    "author_email": "xiachenrui@mail.cbi.pku.edu.cn",
    "download_url": "https://files.pythonhosted.org/packages/e0/af/bec1845e95e843ad4db4bc0c9c792c660824f3a1719007b55520e3300e94/scslat-0.2.1.tar.gz",
    "platform": null,
    "description": "[![stars-badge](https://img.shields.io/github/stars/gao-lab/SLAT?logo=GitHub&color=yellow)](https://github.com/gao-lab/SLAT/stargazers)\n[![dev-badge](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/xiachenrui/bc835db052fde5bd731a09270b42006c/raw/slat_version.json)](https://gist.github.com/xiachenrui/bc835db052fde5bd731a09270b42006c)\n[![build-badge](https://github.com/gao-lab/SLAT/actions/workflows/build.yml/badge.svg)](https://github.com/gao-lab/SLAT/actions/workflows/build.yml)\n[![license-badge](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![docs-badge](https://readthedocs.org/projects/slat/badge/?version=latest)](https://slat.readthedocs.io/en/latest/?badge=latest)\n[![pypi-badge](https://img.shields.io/pypi/v/scslat)](https://pypi.org/project/scslat)\n<!-- [![conda-badge](https://anaconda.org/bioconda/<name>/badges/version.svg)](https://anaconda.org/bioconda/<name>) -->\n\n# scSLAT: single cell spatial alignment tools\n**scSLAT** package implements the **SLAT** (**S**patial **L**inked **A**lignment **T**ool) model to align single cell spatial omics data.\n\n![Model architecture](docs/_static/Model.png)\n\n## Directory structure\n\n```\n.\n\u251c\u2500\u2500 scSLAT/                  # Main Python package\n\u251c\u2500\u2500 env/                     # Extra environment\n\u251c\u2500\u2500 data/                    # Data files\n\u251c\u2500\u2500 evaluation/              # SLAT evaluation pipeline\n\u251c\u2500\u2500 benchmark/               # Benchmark pipeline\n\u251c\u2500\u2500 case/                    # Case studies in paper\n\u251c\u2500\u2500 docs/                    # Documentation files\n\u251c\u2500\u2500 resource/                # Other useful resource \n\u251c\u2500\u2500 pyproject.toml           # Python package metadata\n\u2514\u2500\u2500 README.md\n```\n\n## Tutorial\nTutorial of `scSLAT` is [here](https://slat.readthedocs.io/en/latest/tutorials.html), if you have any question please open an issue on github\n\n<img src='docs/_static/imgalignment.gif' width='400'>\n\n\n## Installation\n\n### Docker\nDockerfile of `scSLAT` is available at [`env/Dockerfile`](env/Dockerfile). You can also pull the docker image directly from [here](https://hub.docker.com/repository/docker/huhansan666666/slat) by:\n\n``` bash\ndocker pull huhansan666666/slat:latest\n```\n\n### PyPI\n> **Note**\n> Installing `scSLAT` within a new [conda environment](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html) is recommended.\n\nFirst, we create a clean environment and install `scSLAT` from PyPI. Then we also need install dependencies for `pyg` manually. We default install with CUDA 11.7. Please refer [here](https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html#quick-start) for CPU version or different CUDA versions.\n\n> **Warning**\n> old NVIDIA driver may raise error, please update NVIDIA driver to the latest version.\n\n```bash\nconda create -n scSLAT python=3.8 -y && conda activate scSLAT\npip install scSLAT\npip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.0.0+cu117.html\n```\n\n### Development version\nFor development purpose, clone this repo and install:\n\n```bash\ngit clone git@github.com:gao-lab/SLAT.git\ncd SLAT\npip install -e \".[dev,docs]\"\npip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.0.0+cu117.html\n```\n\n### Conda (Ongoing)\nWe plan to provide a conda package of `scSLAT` in the near future.\n\n\n## Reproduce manuscript results\n1. Please follow the [`env/README.md`](env/README.md) to install all dependencies. Please checkout the repository to v0.2.1 before install `scSLAT`.\n2. Download and pre-process data follow the [`data/README.md`](data/README.md).\n3. Whole benchmark and evaluation procedure can be found in [`/benchmark`](benchmark/README.md) and [`/evaluation`](evaluation/README.md), respectively.\n4. Every case study is recorded in the [`/case`](case/README.md) directory in the form of jupyter notebook.\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A graph deep learning based tool to align single cell spatial omics data",
    "version": "0.2.1",
    "split_keywords": [
        "bioinformatics",
        "deep-learning",
        "graph-neural-network",
        "single-cell",
        "spatial-omics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bda6f27888cb1c77dccda64f09005fd21d289b1b1aab792480dd525bbec5df81",
                "md5": "f4099cd54127073609103447bc6ac938",
                "sha256": "40cd511cc83acb2b8bbe0c72d23ee42780b90b5aa5e68be3cacbdfcdf007a9c5"
            },
            "downloads": -1,
            "filename": "scslat-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f4099cd54127073609103447bc6ac938",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8,<4.0",
            "size": 33625,
            "upload_time": "2023-04-17T08:53:59",
            "upload_time_iso_8601": "2023-04-17T08:53:59.135466Z",
            "url": "https://files.pythonhosted.org/packages/bd/a6/f27888cb1c77dccda64f09005fd21d289b1b1aab792480dd525bbec5df81/scslat-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e0afbec1845e95e843ad4db4bc0c9c792c660824f3a1719007b55520e3300e94",
                "md5": "e43198ee042c44f5caeb9f5cef8cbd97",
                "sha256": "aef2c9e535d43641563e5c1217006a822def1ddf24ba9bd30da2c5fc20606ab4"
            },
            "downloads": -1,
            "filename": "scslat-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "e43198ee042c44f5caeb9f5cef8cbd97",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<4.0",
            "size": 29725,
            "upload_time": "2023-04-17T08:54:00",
            "upload_time_iso_8601": "2023-04-17T08:54:00.907636Z",
            "url": "https://files.pythonhosted.org/packages/e0/af/bec1845e95e843ad4db4bc0c9c792c660824f3a1719007b55520e3300e94/scslat-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-17 08:54:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "gao-lab",
    "github_project": "SLAT",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "scslat"
}
        
Elapsed time: 0.06856s