.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png
.. image:: https://readthedocs.org/projects/ray/badge/?version=master
:target: http://docs.ray.io/en/master/?badge=master
.. image:: https://img.shields.io/badge/Ray-Join%20Slack-blue
:target: https://forms.gle/9TSdDYUgxYs8SA9e8
.. image:: https://img.shields.io/badge/Discuss-Ask%20Questions-blue
:target: https://discuss.ray.io/
.. image:: https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter
:target: https://twitter.com/raydistributed
|
Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a toolkit of libraries (Ray AIR) for simplifying ML compute:
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/what-is-ray-padded.svg
..
https://docs.google.com/drawings/d/1Pl8aCYOsZCo61cmp57c7Sja6HhIygGCvSZLi_AuBuqo/edit
Learn more about `Ray AIR`_ and its libraries:
- `Datasets`_: Distributed Data Preprocessing
- `Train`_: Distributed Training
- `Tune`_: Scalable Hyperparameter Tuning
- `RLlib`_: Scalable Reinforcement Learning
- `Serve`_: Scalable and Programmable Serving
Or more about `Ray Core`_ and its key abstractions:
- `Tasks`_: Stateless functions executed in the cluster.
- `Actors`_: Stateful worker processes created in the cluster.
- `Objects`_: Immutable values accessible across the cluster.
Ray runs on any machine, cluster, cloud provider, and Kubernetes, and features a growing
`ecosystem of community integrations`_.
Install Ray with: ``pip install ray``. For nightly wheels, see the
`Installation page <https://docs.ray.io/en/latest/installation.html>`__.
.. _`Serve`: https://docs.ray.io/en/latest/serve/index.html
.. _`Datasets`: https://docs.ray.io/en/latest/data/dataset.html
.. _`Workflow`: https://docs.ray.io/en/latest/workflows/concepts.html
.. _`Train`: https://docs.ray.io/en/latest/train/train.html
.. _`Tune`: https://docs.ray.io/en/latest/tune/index.html
.. _`RLlib`: https://docs.ray.io/en/latest/rllib/index.html
.. _`ecosystem of community integrations`: https://docs.ray.io/en/latest/ray-overview/ray-libraries.html
Why Ray?
--------
Today's ML workloads are increasingly compute-intensive. As convenient as they are, single-node development environments such as your laptop cannot scale to meet these demands.
Ray is a unified way to scale Python and AI applications from a laptop to a cluster.
With Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray is designed to be general-purpose, meaning that it can performantly run any kind of workload. If your application is written in Python, you can scale it with Ray, no other infrastructure required.
More Information
----------------
- `Documentation`_
- `Ray Architecture whitepaper`_
- `Ray AIR Technical whitepaper`_
- `Exoshuffle: large-scale data shuffle in Ray`_
- `Ownership: a distributed futures system for fine-grained tasks`_
- `RLlib paper`_
- `Tune paper`_
*Older documents:*
- `Ray paper`_
- `Ray HotOS paper`_
- `Ray Architecture v1 whitepaper`_
.. _`Ray AIR`: https://docs.ray.io/en/latest/ray-air/getting-started.html
.. _`Ray Core`: https://docs.ray.io/en/latest/ray-core/walkthrough.html
.. _`Tasks`: https://docs.ray.io/en/latest/ray-core/tasks.html
.. _`Actors`: https://docs.ray.io/en/latest/ray-core/actors.html
.. _`Objects`: https://docs.ray.io/en/latest/ray-core/objects.html
.. _`Documentation`: http://docs.ray.io/en/latest/index.html
.. _`Ray Architecture v1 whitepaper`: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview
.. _`Ray Architecture whitepaper`: https://docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI/preview
.. _`Ray AIR Technical whitepaper`: https://docs.google.com/document/d/1bYL-638GN6EeJ45dPuLiPImA8msojEDDKiBx3YzB4_s/preview
.. _`Exoshuffle: large-scale data shuffle in Ray`: https://arxiv.org/abs/2203.05072
.. _`Ownership: a distributed futures system for fine-grained tasks`: https://www.usenix.org/system/files/nsdi21-wang.pdf
.. _`Ray paper`: https://arxiv.org/abs/1712.05889
.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924
.. _`RLlib paper`: https://arxiv.org/abs/1712.09381
.. _`Tune paper`: https://arxiv.org/abs/1807.05118
Getting Involved
----------------
.. list-table::
:widths: 25 50 25 25
:header-rows: 1
* - Platform
- Purpose
- Estimated Response Time
- Support Level
* - `Discourse Forum`_
- For discussions about development and questions about usage.
- < 1 day
- Community
* - `GitHub Issues`_
- For reporting bugs and filing feature requests.
- < 2 days
- Ray OSS Team
* - `Slack`_
- For collaborating with other Ray users.
- < 2 days
- Community
* - `StackOverflow`_
- For asking questions about how to use Ray.
- 3-5 days
- Community
* - `Meetup Group`_
- For learning about Ray projects and best practices.
- Monthly
- Ray DevRel
* - `Twitter`_
- For staying up-to-date on new features.
- Daily
- Ray DevRel
.. _`Discourse Forum`: https://discuss.ray.io/
.. _`GitHub Issues`: https://github.com/ray-project/ray/issues
.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray
.. _`Meetup Group`: https://www.meetup.com/Bay-Area-Ray-Meetup/
.. _`Twitter`: https://twitter.com/raydistributed
.. _`Slack`: https://forms.gle/9TSdDYUgxYs8SA9e8
Raw data
{
"_id": null,
"home_page": "https://github.com/ray-project/ray",
"name": "secretflow-ray",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "ray distributed parallel machine-learning hyperparameter-tuningreinforcement-learning deep-learning serving python",
"author": "Ray Team",
"author_email": "ray-dev@googlegroups.com",
"download_url": "",
"platform": null,
"description": ".. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png\n\n.. image:: https://readthedocs.org/projects/ray/badge/?version=master\n :target: http://docs.ray.io/en/master/?badge=master\n\n.. image:: https://img.shields.io/badge/Ray-Join%20Slack-blue\n :target: https://forms.gle/9TSdDYUgxYs8SA9e8\n\n.. image:: https://img.shields.io/badge/Discuss-Ask%20Questions-blue\n :target: https://discuss.ray.io/\n\n.. image:: https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter\n :target: https://twitter.com/raydistributed\n\n|\n\nRay is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a toolkit of libraries (Ray AIR) for simplifying ML compute:\n\n.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/what-is-ray-padded.svg\n\n..\n https://docs.google.com/drawings/d/1Pl8aCYOsZCo61cmp57c7Sja6HhIygGCvSZLi_AuBuqo/edit\n\nLearn more about `Ray AIR`_ and its libraries:\n\n- `Datasets`_: Distributed Data Preprocessing\n- `Train`_: Distributed Training\n- `Tune`_: Scalable Hyperparameter Tuning\n- `RLlib`_: Scalable Reinforcement Learning\n- `Serve`_: Scalable and Programmable Serving\n\nOr more about `Ray Core`_ and its key abstractions:\n\n- `Tasks`_: Stateless functions executed in the cluster.\n- `Actors`_: Stateful worker processes created in the cluster.\n- `Objects`_: Immutable values accessible across the cluster.\n\nRay runs on any machine, cluster, cloud provider, and Kubernetes, and features a growing\n`ecosystem of community integrations`_.\n\nInstall Ray with: ``pip install ray``. For nightly wheels, see the\n`Installation page <https://docs.ray.io/en/latest/installation.html>`__.\n\n.. _`Serve`: https://docs.ray.io/en/latest/serve/index.html\n.. _`Datasets`: https://docs.ray.io/en/latest/data/dataset.html\n.. _`Workflow`: https://docs.ray.io/en/latest/workflows/concepts.html\n.. _`Train`: https://docs.ray.io/en/latest/train/train.html\n.. _`Tune`: https://docs.ray.io/en/latest/tune/index.html\n.. _`RLlib`: https://docs.ray.io/en/latest/rllib/index.html\n.. _`ecosystem of community integrations`: https://docs.ray.io/en/latest/ray-overview/ray-libraries.html\n\n\nWhy Ray?\n--------\n\nToday's ML workloads are increasingly compute-intensive. As convenient as they are, single-node development environments such as your laptop cannot scale to meet these demands.\n\nRay is a unified way to scale Python and AI applications from a laptop to a cluster.\n\nWith Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray is designed to be general-purpose, meaning that it can performantly run any kind of workload. If your application is written in Python, you can scale it with Ray, no other infrastructure required.\n\nMore Information\n----------------\n\n- `Documentation`_\n- `Ray Architecture whitepaper`_\n- `Ray AIR Technical whitepaper`_\n- `Exoshuffle: large-scale data shuffle in Ray`_\n- `Ownership: a distributed futures system for fine-grained tasks`_\n- `RLlib paper`_\n- `Tune paper`_\n\n*Older documents:*\n\n- `Ray paper`_\n- `Ray HotOS paper`_\n- `Ray Architecture v1 whitepaper`_\n\n.. _`Ray AIR`: https://docs.ray.io/en/latest/ray-air/getting-started.html\n.. _`Ray Core`: https://docs.ray.io/en/latest/ray-core/walkthrough.html\n.. _`Tasks`: https://docs.ray.io/en/latest/ray-core/tasks.html\n.. _`Actors`: https://docs.ray.io/en/latest/ray-core/actors.html\n.. _`Objects`: https://docs.ray.io/en/latest/ray-core/objects.html\n.. _`Documentation`: http://docs.ray.io/en/latest/index.html\n.. _`Ray Architecture v1 whitepaper`: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview\n.. _`Ray Architecture whitepaper`: https://docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI/preview\n.. _`Ray AIR Technical whitepaper`: https://docs.google.com/document/d/1bYL-638GN6EeJ45dPuLiPImA8msojEDDKiBx3YzB4_s/preview\n.. _`Exoshuffle: large-scale data shuffle in Ray`: https://arxiv.org/abs/2203.05072\n.. _`Ownership: a distributed futures system for fine-grained tasks`: https://www.usenix.org/system/files/nsdi21-wang.pdf\n.. _`Ray paper`: https://arxiv.org/abs/1712.05889\n.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924\n.. _`RLlib paper`: https://arxiv.org/abs/1712.09381\n.. _`Tune paper`: https://arxiv.org/abs/1807.05118\n\nGetting Involved\n----------------\n\n.. list-table::\n :widths: 25 50 25 25\n :header-rows: 1\n\n * - Platform\n - Purpose\n - Estimated Response Time\n - Support Level\n * - `Discourse Forum`_\n - For discussions about development and questions about usage.\n - < 1 day\n - Community\n * - `GitHub Issues`_\n - For reporting bugs and filing feature requests.\n - < 2 days\n - Ray OSS Team\n * - `Slack`_\n - For collaborating with other Ray users.\n - < 2 days\n - Community\n * - `StackOverflow`_\n - For asking questions about how to use Ray.\n - 3-5 days\n - Community\n * - `Meetup Group`_\n - For learning about Ray projects and best practices.\n - Monthly\n - Ray DevRel\n * - `Twitter`_\n - For staying up-to-date on new features.\n - Daily\n - Ray DevRel\n\n.. _`Discourse Forum`: https://discuss.ray.io/\n.. _`GitHub Issues`: https://github.com/ray-project/ray/issues\n.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray\n.. _`Meetup Group`: https://www.meetup.com/Bay-Area-Ray-Meetup/\n.. _`Twitter`: https://twitter.com/raydistributed\n.. _`Slack`: https://forms.gle/9TSdDYUgxYs8SA9e8\n\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "Ray provides a simple, universal API for building distributed applications.",
"version": "2.2.0",
"split_keywords": [
"ray",
"distributed",
"parallel",
"machine-learning",
"hyperparameter-tuningreinforcement-learning",
"deep-learning",
"serving",
"python"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "16ac9cef1f3df1362ef54e0cb6155c8ed42652d84ec85dd5fc306b4b874e07da",
"md5": "2a93491a76d116f92ea519ae3729f36a",
"sha256": "ce91494be7e881ee0eda685a9d7d4c7a69100f9ef47020e101508dc49511afac"
},
"downloads": -1,
"filename": "secretflow_ray-2.2.0-cp310-cp310-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "2a93491a76d116f92ea519ae3729f36a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 27824386,
"upload_time": "2023-01-09T12:07:20",
"upload_time_iso_8601": "2023-01-09T12:07:20.277287Z",
"url": "https://files.pythonhosted.org/packages/16/ac/9cef1f3df1362ef54e0cb6155c8ed42652d84ec85dd5fc306b4b874e07da/secretflow_ray-2.2.0-cp310-cp310-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9f15aad27cea1467f45b5ca7bb4763f3b762b8d675a836af300a0cbb28e85c5d",
"md5": "f81251924a7a3eaf2720ae099013f5a0",
"sha256": "c4a0a699ecc392e5250d208ed6122b24ac1f1180a984f535c1b9ec327158ad1c"
},
"downloads": -1,
"filename": "secretflow_ray-2.2.0-cp36-cp36m-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "f81251924a7a3eaf2720ae099013f5a0",
"packagetype": "bdist_wheel",
"python_version": "cp36",
"requires_python": null,
"size": 28228201,
"upload_time": "2023-01-09T12:07:29",
"upload_time_iso_8601": "2023-01-09T12:07:29.076911Z",
"url": "https://files.pythonhosted.org/packages/9f/15/aad27cea1467f45b5ca7bb4763f3b762b8d675a836af300a0cbb28e85c5d/secretflow_ray-2.2.0-cp36-cp36m-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "178e3bbbfe8313a655ed26f9e35489108da6266fed0c493ec01993d21af71e7c",
"md5": "6ced591e527e63b899f305b2744bd960",
"sha256": "b35b817f623a6732dd7c38988e4e8b7c8b2317c720035e0bfcc4a1a3e2529e64"
},
"downloads": -1,
"filename": "secretflow_ray-2.2.0-cp37-cp37m-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "6ced591e527e63b899f305b2744bd960",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": null,
"size": 28112882,
"upload_time": "2023-01-09T12:07:35",
"upload_time_iso_8601": "2023-01-09T12:07:35.657720Z",
"url": "https://files.pythonhosted.org/packages/17/8e/3bbbfe8313a655ed26f9e35489108da6266fed0c493ec01993d21af71e7c/secretflow_ray-2.2.0-cp37-cp37m-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c3dee4fe2eb8b659dbdf3342a104c32eeaaa30fafd1e151cd8f0af0eb6fc8bba",
"md5": "39836a6d36105796f6b2bec7918ee822",
"sha256": "c1492fd695dca9244aa78052f57a0283c4e214180d3b70e95cfabfb890c1648f"
},
"downloads": -1,
"filename": "secretflow_ray-2.2.0-cp38-cp38-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "39836a6d36105796f6b2bec7918ee822",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": null,
"size": 27845590,
"upload_time": "2023-01-09T12:07:42",
"upload_time_iso_8601": "2023-01-09T12:07:42.121927Z",
"url": "https://files.pythonhosted.org/packages/c3/de/e4fe2eb8b659dbdf3342a104c32eeaaa30fafd1e151cd8f0af0eb6fc8bba/secretflow_ray-2.2.0-cp38-cp38-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c94de514f1bf266f2554bbd1bdede4603770ff04c4e8f7ff62b7dca80dc64700",
"md5": "345272162aca87c4cb502a7e1f50a741",
"sha256": "c11b2df359e7098eed12be409fb6ebf19c805e68bcee09079a1257230802b118"
},
"downloads": -1,
"filename": "secretflow_ray-2.2.0-cp39-cp39-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "345272162aca87c4cb502a7e1f50a741",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 27824460,
"upload_time": "2023-01-09T12:07:48",
"upload_time_iso_8601": "2023-01-09T12:07:48.580860Z",
"url": "https://files.pythonhosted.org/packages/c9/4d/e514f1bf266f2554bbd1bdede4603770ff04c4e8f7ff62b7dca80dc64700/secretflow_ray-2.2.0-cp39-cp39-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-09 12:07:20",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "ray-project",
"github_project": "ray",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "secretflow-ray"
}