snipit-mc


Namesnipit-mc JSON
Version 0.0.4 PyPI version JSON
download
home_pagehttps://github.com/hyzhou1990/snipit-multicolor
SummaryEnhanced snipit with artistic color palettes and improved SNP visualization
upload_time2025-07-29 12:09:55
maintainerNone
docs_urlNone
authorhyzhou1990
requires_python>=3.7
licenseGPL-3.0
keywords bioinformatics snp visualization genomics mutation phylogenetics sequence-analysis covid sars-cov-2 genbank
VCS
bugtrack_url
requirements biopython matplotlib
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # snipit-multicolor
Enhanced version of snipit with artistic color palettes and improved visualization

Summarise SNPs relative to a reference sequence with beautiful, publication-ready visualizations

<img src="https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/genome_graph.png" width="700">

## Gallery

### Color Palette Comparison
<img src="https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/examples/palette_comparison.png" width="800">

### Example Outputs

#### Nature Style - High-saturation colors for publications
<img src="https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/examples/nature_example.png" width="600">

#### Morandi Style - Muted, sophisticated tones
<img src="https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/examples/morandi_example.png" width="600">

#### Van Gogh Style - Vibrant, expressive colors
<img src="https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/examples/vangogh_example.png" width="600">

### GenBank Gene Annotations

#### SARS-CoV-2 Genome with Multi-color Gene Tracks

**Nature Palette** - High-saturation scientific colors
<img src="https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/examples/sars_cov2_nature.png" width="700">

**Morandi Palette** - Muted, sophisticated tones
<img src="https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/examples/sars_cov2_morandi.png" width="700">

**Monet Palette** - Soft impressionist pastels
<img src="https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/examples/sars_cov2_monet.png" width="700">

*Each gene (ORF1ab, S, ORF3a, E, M, N) receives its own unique color that harmonizes with the selected palette*

## What's New in snipit-multicolor

This enhanced version includes:
- **Artistic color palettes** inspired by famous painters (Morandi, Van Gogh, Monet, Matisse)
- **Enhanced visualization quality** with higher DPI, text shadows, and improved typography
- **Cleaner aesthetics** with removed outer borders and subtle label backgrounds
- **Better readability** with optimized font sizes and visual hierarchy
- **GenBank gene annotations** with multi-color gene tracks showing individual genes in harmonized colors

## Installation

### From PyPI (Recommended)
```bash
pip install snipit-mc
```

### From Source
```
git clone https://github.com/hyzhou1990/snipit-multicolor.git
cd snipit-multicolor
pip install -e .
```

## Quick Start

### Command Line Usage
```bash
# Basic nucleotide alignment visualization
snipit alignment.fasta --output-file output

# With artistic color palette
snipit alignment.fasta --colour-palette nature --output-file nature_plot

# For amino acid sequences
snipit protein.fasta --sequence-type aa --colour-palette nature_aa --output-file protein_plot
```

### Python API Usage

snipit-mc also provides a comprehensive Python API for programmatic use:

```python
from snipit import snipit_plot, SnipitConfig

# Basic usage
result = snipit_plot("alignment.fasta", colour_palette="nature")

# Advanced usage with configuration
config = SnipitConfig(
    colour_palette="vangogh",
    width=12,
    height=8,
    format="pdf",
    genbank="reference.gb"
)
result = snipit_plot("alignment.fasta", config=config)

# Convenience functions
from snipit import quick_plot, publication_plot, protein_plot

# Quick plot
quick_plot("alignment.fasta", palette="nature")

# Publication-ready plot
publication_plot("alignment.fasta", palette="nature", genbank="ref.gb")

# Protein analysis
protein_plot("protein.fasta", palette="monet_aa")
```

📖 **[Complete Python API Documentation](docs/API_DOCUMENTATION.md)**

## Color Palettes

### Artistic Palettes
Each artistic palette is available in three versions:
- **Base version** for nucleotides (A, T, G, C)
- **Extended version** for ambiguous nucleotides
- **Amino acid version** for protein sequences

#### Nature Style
High-saturation colors suitable for Nature publications
```bash
snipit alignment.fasta --colour-palette nature           # Nucleotides
snipit alignment.fasta --colour-palette nature_extended  # With ambiguous bases
snipit protein.fasta --sequence-type aa --colour-palette nature_aa  # Amino acids
```

#### Morandi Style
Muted, grey-toned colors inspired by Giorgio Morandi
```bash
snipit alignment.fasta --colour-palette morandi
snipit alignment.fasta --colour-palette morandi_extended
snipit protein.fasta --sequence-type aa --colour-palette morandi_aa
```

#### Van Gogh Style
Vibrant, expressive colors inspired by Vincent van Gogh
```bash
snipit alignment.fasta --colour-palette vangogh
snipit alignment.fasta --colour-palette vangogh_extended
snipit protein.fasta --sequence-type aa --colour-palette vangogh_aa
```

#### Monet Style
Soft impressionist pastels inspired by Claude Monet
```bash
snipit alignment.fasta --colour-palette monet
snipit alignment.fasta --colour-palette monet_extended
snipit protein.fasta --sequence-type aa --colour-palette monet_aa
```

#### Matisse Style
Bold, pure colors inspired by Henri Matisse
```bash
snipit alignment.fasta --colour-palette matisse
snipit alignment.fasta --colour-palette matisse_extended
snipit protein.fasta --sequence-type aa --colour-palette matisse_aa
```

### Classic Palettes
- `classic`: Traditional SNP visualization colors
- `classic_extended`: Classic with ambiguous base support
- `primary`: Primary colors
- `purine-pyrimidine`: Color by base type
- `greyscale`: Monochrome visualization
- `wes`: Wes Anderson inspired
- `verity`: Pink/purple theme
- `ugene`: UGENE software colors (for amino acids)

## Advanced Features

### Enhanced Visualization Options

```bash
# High-quality figure with custom size
snipit alignment.fasta \
  --colour-palette nature \
  --width 15 \
  --height 10 \
  --output-file high_quality

# Sort sequences by mutation count
snipit alignment.fasta \
  --colour-palette vangogh \
  --sort-by-mutation-number \
  --output-file sorted_plot
```

### Working with Large Alignments

```bash
# Focus on specific regions
snipit large_alignment.fasta \
  --colour-palette monet \
  --include-positions 100-500 \
  --exclude-positions 250-300 \
  --output-file region_plot

# Include indels in visualization
snipit alignment.fasta \
  --colour-palette matisse \
  --show-indels \
  --output-file indel_plot
```

### Recombination Analysis

```bash
# Visualize recombination patterns
snipit alignment.fasta \
  --reference REF_SEQ \
  --recombi-mode \
  --recombi-references "PARENT1,PARENT2" \
  --output-file recombination_plot
```

### Gene Annotations with GenBank

Display beautiful gene tracks with directional arrows using GenBank files:

```bash
# Add gene annotations from GenBank file
snipit alignment.fasta \
  --genbank reference.gb \
  --colour-palette nature \
  --output-file annotated_plot

# Combine with other features
snipit alignment.fasta \
  --genbank viral_genome.gb \
  --colour-palette vangogh \
  --sort-by-mutation-number \
  --width 15 \
  --output-file comprehensive_analysis

# Real example with SARS-CoV-2
snipit covid_sequences.fasta \
  --genbank NC_045512.gb \
  --colour-palette monet \
  --output-file covid_with_genes
```

Each gene is automatically assigned a unique color that harmonizes with your chosen palette:
- **Nature palette**: High-saturation scientific colors
- **Morandi palette**: Muted, sophisticated tones  
- **Van Gogh palette**: Vibrant, contrasting colors
- **Monet palette**: Soft impressionist pastels
- **Matisse palette**: Bold, pure colors

Arrows indicate gene direction (forward/reverse strand) and gene names are displayed when space permits.

## Output Formats

Supported output formats:
- `png` (default) - High-resolution raster image
- `pdf` - Vector format for publications
- `svg` - Editable vector format
- `jpg` - Compressed raster image
- `tiff` - High-quality raster for publications

```bash
snipit alignment.fasta --format pdf --output-file figure
```

## Examples

### Example 1: Publication-Ready Figure
```bash
snipit test.fasta \
  --colour-palette nature \
  --width 12 \
  --format pdf \
  --solid-background \
  --output-file publication_figure
```

### Example 2: Amino Acid Alignment
```bash
snipit aa_alignment.fasta \
  --sequence-type aa \
  --colour-palette monet_aa \
  --sort-by-id \
  --output-file protein_analysis
```

### Example 3: Custom Analysis
```bash
snipit alignment.fasta \
  --colour-palette vangogh_extended \
  --reference "Reference_Seq" \
  --labels sample_labels.csv \
  --ambig-mode all \
  --flip-vertical \
  --output-file custom_analysis
```

### Example 4: SARS-CoV-2 with Gene Annotations
```bash
# Download SARS-CoV-2 reference GenBank file
curl -o NC_045512.gb "https://www.ncbi.nlm.nih.gov/sviewer/viewer.fcgi?id=NC_045512.2&db=nuccore&report=genbank&conwithfeat=on&hide-cdd=on&retmode=text"

# Create visualization with gene annotations
snipit covid_alignment.fasta \
  --genbank NC_045512.gb \
  --colour-palette nature \
  --sort-by-mutation-number \
  --width 14 \
  --output-file covid_mutations_with_genes
```

## Full Usage

```
snipit <alignment> [options]

Input options:
  alignment             Input alignment fasta file
  -t {nt,aa}           Input sequence type: aa or nt (default: nt)
  -r REFERENCE         Reference sequence ID (default: first sequence)
  -l LABELS            CSV file with sequence labels
  --l-header           Column headers in label CSV (default: 'name,label')
  -g, --genbank        GenBank file for gene annotations

Output options:
  -d OUTPUT_DIR        Output directory (default: current directory)
  -o OUTPUT_FILE       Output file name stem (default: snp_plot)
  -s, --write-snps     Write SNPs to CSV file
  -f FORMAT            Output format: png, jpg, pdf, svg, tiff (default: png)

Figure options:
  --height HEIGHT      Figure height
  --width WIDTH        Figure width
  --size-option        Sizing options: expand, scale
  --solid-background   Solid background instead of transparent
  -c, --colour-palette Color palette selection
  --flip-vertical      Flip plot orientation
  --sort-by-mutation-number  Sort by SNP count
  --sort-by-id         Sort alphabetically by ID
  --sort-by-mutations  Sort by bases at positions (e.g., '1,2,3')

SNP options:
  --show-indels        Include indels in plot
  --include-positions  Positions to include (e.g., '100-150')
  --exclude-positions  Positions to exclude (e.g., '223 224')
  --ambig-mode         Handle ambiguous bases: all, snps, exclude
```

## Citation

If you use snipit-multicolor in your work, please cite:

```
Original snipit:
Áine O'Toole, snipit (2024) GitHub repository, https://github.com/aineniamh/snipit

Enhanced multicolor version:
hyzhou1990, snipit-multicolor (2025) GitHub repository, https://github.com/hyzhou1990/snipit-multicolor
```

## Issues and Contributions

Please report issues or suggest features at: https://github.com/hyzhou1990/snipit-multicolor/issues

## License

This project maintains the same license as the original snipit tool.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hyzhou1990/snipit-multicolor",
    "name": "snipit-mc",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "bioinformatics, snp, visualization, genomics, mutation, phylogenetics, sequence-analysis, covid, sars-cov-2, genbank",
    "author": "hyzhou1990",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/0d/00/784de4a649e0453cb1c1756493d3a121dc730c6a6ef3e67526ccfa595c45/snipit_mc-0.0.4.tar.gz",
    "platform": null,
    "description": "# snipit-multicolor\nEnhanced version of snipit with artistic color palettes and improved visualization\n\nSummarise SNPs relative to a reference sequence with beautiful, publication-ready visualizations\n\n<img src=\"https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/genome_graph.png\" width=\"700\">\n\n## Gallery\n\n### Color Palette Comparison\n<img src=\"https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/examples/palette_comparison.png\" width=\"800\">\n\n### Example Outputs\n\n#### Nature Style - High-saturation colors for publications\n<img src=\"https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/examples/nature_example.png\" width=\"600\">\n\n#### Morandi Style - Muted, sophisticated tones\n<img src=\"https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/examples/morandi_example.png\" width=\"600\">\n\n#### Van Gogh Style - Vibrant, expressive colors\n<img src=\"https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/examples/vangogh_example.png\" width=\"600\">\n\n### GenBank Gene Annotations\n\n#### SARS-CoV-2 Genome with Multi-color Gene Tracks\n\n**Nature Palette** - High-saturation scientific colors\n<img src=\"https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/examples/sars_cov2_nature.png\" width=\"700\">\n\n**Morandi Palette** - Muted, sophisticated tones\n<img src=\"https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/examples/sars_cov2_morandi.png\" width=\"700\">\n\n**Monet Palette** - Soft impressionist pastels\n<img src=\"https://raw.githubusercontent.com/hyzhou1990/snipit-multicolor/master/docs/examples/sars_cov2_monet.png\" width=\"700\">\n\n*Each gene (ORF1ab, S, ORF3a, E, M, N) receives its own unique color that harmonizes with the selected palette*\n\n## What's New in snipit-multicolor\n\nThis enhanced version includes:\n- **Artistic color palettes** inspired by famous painters (Morandi, Van Gogh, Monet, Matisse)\n- **Enhanced visualization quality** with higher DPI, text shadows, and improved typography\n- **Cleaner aesthetics** with removed outer borders and subtle label backgrounds\n- **Better readability** with optimized font sizes and visual hierarchy\n- **GenBank gene annotations** with multi-color gene tracks showing individual genes in harmonized colors\n\n## Installation\n\n### From PyPI (Recommended)\n```bash\npip install snipit-mc\n```\n\n### From Source\n```\ngit clone https://github.com/hyzhou1990/snipit-multicolor.git\ncd snipit-multicolor\npip install -e .\n```\n\n## Quick Start\n\n### Command Line Usage\n```bash\n# Basic nucleotide alignment visualization\nsnipit alignment.fasta --output-file output\n\n# With artistic color palette\nsnipit alignment.fasta --colour-palette nature --output-file nature_plot\n\n# For amino acid sequences\nsnipit protein.fasta --sequence-type aa --colour-palette nature_aa --output-file protein_plot\n```\n\n### Python API Usage\n\nsnipit-mc also provides a comprehensive Python API for programmatic use:\n\n```python\nfrom snipit import snipit_plot, SnipitConfig\n\n# Basic usage\nresult = snipit_plot(\"alignment.fasta\", colour_palette=\"nature\")\n\n# Advanced usage with configuration\nconfig = SnipitConfig(\n    colour_palette=\"vangogh\",\n    width=12,\n    height=8,\n    format=\"pdf\",\n    genbank=\"reference.gb\"\n)\nresult = snipit_plot(\"alignment.fasta\", config=config)\n\n# Convenience functions\nfrom snipit import quick_plot, publication_plot, protein_plot\n\n# Quick plot\nquick_plot(\"alignment.fasta\", palette=\"nature\")\n\n# Publication-ready plot\npublication_plot(\"alignment.fasta\", palette=\"nature\", genbank=\"ref.gb\")\n\n# Protein analysis\nprotein_plot(\"protein.fasta\", palette=\"monet_aa\")\n```\n\n\ud83d\udcd6 **[Complete Python API Documentation](docs/API_DOCUMENTATION.md)**\n\n## Color Palettes\n\n### Artistic Palettes\nEach artistic palette is available in three versions:\n- **Base version** for nucleotides (A, T, G, C)\n- **Extended version** for ambiguous nucleotides\n- **Amino acid version** for protein sequences\n\n#### Nature Style\nHigh-saturation colors suitable for Nature publications\n```bash\nsnipit alignment.fasta --colour-palette nature           # Nucleotides\nsnipit alignment.fasta --colour-palette nature_extended  # With ambiguous bases\nsnipit protein.fasta --sequence-type aa --colour-palette nature_aa  # Amino acids\n```\n\n#### Morandi Style\nMuted, grey-toned colors inspired by Giorgio Morandi\n```bash\nsnipit alignment.fasta --colour-palette morandi\nsnipit alignment.fasta --colour-palette morandi_extended\nsnipit protein.fasta --sequence-type aa --colour-palette morandi_aa\n```\n\n#### Van Gogh Style\nVibrant, expressive colors inspired by Vincent van Gogh\n```bash\nsnipit alignment.fasta --colour-palette vangogh\nsnipit alignment.fasta --colour-palette vangogh_extended\nsnipit protein.fasta --sequence-type aa --colour-palette vangogh_aa\n```\n\n#### Monet Style\nSoft impressionist pastels inspired by Claude Monet\n```bash\nsnipit alignment.fasta --colour-palette monet\nsnipit alignment.fasta --colour-palette monet_extended\nsnipit protein.fasta --sequence-type aa --colour-palette monet_aa\n```\n\n#### Matisse Style\nBold, pure colors inspired by Henri Matisse\n```bash\nsnipit alignment.fasta --colour-palette matisse\nsnipit alignment.fasta --colour-palette matisse_extended\nsnipit protein.fasta --sequence-type aa --colour-palette matisse_aa\n```\n\n### Classic Palettes\n- `classic`: Traditional SNP visualization colors\n- `classic_extended`: Classic with ambiguous base support\n- `primary`: Primary colors\n- `purine-pyrimidine`: Color by base type\n- `greyscale`: Monochrome visualization\n- `wes`: Wes Anderson inspired\n- `verity`: Pink/purple theme\n- `ugene`: UGENE software colors (for amino acids)\n\n## Advanced Features\n\n### Enhanced Visualization Options\n\n```bash\n# High-quality figure with custom size\nsnipit alignment.fasta \\\n  --colour-palette nature \\\n  --width 15 \\\n  --height 10 \\\n  --output-file high_quality\n\n# Sort sequences by mutation count\nsnipit alignment.fasta \\\n  --colour-palette vangogh \\\n  --sort-by-mutation-number \\\n  --output-file sorted_plot\n```\n\n### Working with Large Alignments\n\n```bash\n# Focus on specific regions\nsnipit large_alignment.fasta \\\n  --colour-palette monet \\\n  --include-positions 100-500 \\\n  --exclude-positions 250-300 \\\n  --output-file region_plot\n\n# Include indels in visualization\nsnipit alignment.fasta \\\n  --colour-palette matisse \\\n  --show-indels \\\n  --output-file indel_plot\n```\n\n### Recombination Analysis\n\n```bash\n# Visualize recombination patterns\nsnipit alignment.fasta \\\n  --reference REF_SEQ \\\n  --recombi-mode \\\n  --recombi-references \"PARENT1,PARENT2\" \\\n  --output-file recombination_plot\n```\n\n### Gene Annotations with GenBank\n\nDisplay beautiful gene tracks with directional arrows using GenBank files:\n\n```bash\n# Add gene annotations from GenBank file\nsnipit alignment.fasta \\\n  --genbank reference.gb \\\n  --colour-palette nature \\\n  --output-file annotated_plot\n\n# Combine with other features\nsnipit alignment.fasta \\\n  --genbank viral_genome.gb \\\n  --colour-palette vangogh \\\n  --sort-by-mutation-number \\\n  --width 15 \\\n  --output-file comprehensive_analysis\n\n# Real example with SARS-CoV-2\nsnipit covid_sequences.fasta \\\n  --genbank NC_045512.gb \\\n  --colour-palette monet \\\n  --output-file covid_with_genes\n```\n\nEach gene is automatically assigned a unique color that harmonizes with your chosen palette:\n- **Nature palette**: High-saturation scientific colors\n- **Morandi palette**: Muted, sophisticated tones  \n- **Van Gogh palette**: Vibrant, contrasting colors\n- **Monet palette**: Soft impressionist pastels\n- **Matisse palette**: Bold, pure colors\n\nArrows indicate gene direction (forward/reverse strand) and gene names are displayed when space permits.\n\n## Output Formats\n\nSupported output formats:\n- `png` (default) - High-resolution raster image\n- `pdf` - Vector format for publications\n- `svg` - Editable vector format\n- `jpg` - Compressed raster image\n- `tiff` - High-quality raster for publications\n\n```bash\nsnipit alignment.fasta --format pdf --output-file figure\n```\n\n## Examples\n\n### Example 1: Publication-Ready Figure\n```bash\nsnipit test.fasta \\\n  --colour-palette nature \\\n  --width 12 \\\n  --format pdf \\\n  --solid-background \\\n  --output-file publication_figure\n```\n\n### Example 2: Amino Acid Alignment\n```bash\nsnipit aa_alignment.fasta \\\n  --sequence-type aa \\\n  --colour-palette monet_aa \\\n  --sort-by-id \\\n  --output-file protein_analysis\n```\n\n### Example 3: Custom Analysis\n```bash\nsnipit alignment.fasta \\\n  --colour-palette vangogh_extended \\\n  --reference \"Reference_Seq\" \\\n  --labels sample_labels.csv \\\n  --ambig-mode all \\\n  --flip-vertical \\\n  --output-file custom_analysis\n```\n\n### Example 4: SARS-CoV-2 with Gene Annotations\n```bash\n# Download SARS-CoV-2 reference GenBank file\ncurl -o NC_045512.gb \"https://www.ncbi.nlm.nih.gov/sviewer/viewer.fcgi?id=NC_045512.2&db=nuccore&report=genbank&conwithfeat=on&hide-cdd=on&retmode=text\"\n\n# Create visualization with gene annotations\nsnipit covid_alignment.fasta \\\n  --genbank NC_045512.gb \\\n  --colour-palette nature \\\n  --sort-by-mutation-number \\\n  --width 14 \\\n  --output-file covid_mutations_with_genes\n```\n\n## Full Usage\n\n```\nsnipit <alignment> [options]\n\nInput options:\n  alignment             Input alignment fasta file\n  -t {nt,aa}           Input sequence type: aa or nt (default: nt)\n  -r REFERENCE         Reference sequence ID (default: first sequence)\n  -l LABELS            CSV file with sequence labels\n  --l-header           Column headers in label CSV (default: 'name,label')\n  -g, --genbank        GenBank file for gene annotations\n\nOutput options:\n  -d OUTPUT_DIR        Output directory (default: current directory)\n  -o OUTPUT_FILE       Output file name stem (default: snp_plot)\n  -s, --write-snps     Write SNPs to CSV file\n  -f FORMAT            Output format: png, jpg, pdf, svg, tiff (default: png)\n\nFigure options:\n  --height HEIGHT      Figure height\n  --width WIDTH        Figure width\n  --size-option        Sizing options: expand, scale\n  --solid-background   Solid background instead of transparent\n  -c, --colour-palette Color palette selection\n  --flip-vertical      Flip plot orientation\n  --sort-by-mutation-number  Sort by SNP count\n  --sort-by-id         Sort alphabetically by ID\n  --sort-by-mutations  Sort by bases at positions (e.g., '1,2,3')\n\nSNP options:\n  --show-indels        Include indels in plot\n  --include-positions  Positions to include (e.g., '100-150')\n  --exclude-positions  Positions to exclude (e.g., '223 224')\n  --ambig-mode         Handle ambiguous bases: all, snps, exclude\n```\n\n## Citation\n\nIf you use snipit-multicolor in your work, please cite:\n\n```\nOriginal snipit:\n\u00c1ine O'Toole, snipit (2024) GitHub repository, https://github.com/aineniamh/snipit\n\nEnhanced multicolor version:\nhyzhou1990, snipit-multicolor (2025) GitHub repository, https://github.com/hyzhou1990/snipit-multicolor\n```\n\n## Issues and Contributions\n\nPlease report issues or suggest features at: https://github.com/hyzhou1990/snipit-multicolor/issues\n\n## License\n\nThis project maintains the same license as the original snipit tool.\n",
    "bugtrack_url": null,
    "license": "GPL-3.0",
    "summary": "Enhanced snipit with artistic color palettes and improved SNP visualization",
    "version": "0.0.4",
    "project_urls": {
        "Bug Reports": "https://github.com/hyzhou1990/snipit-multicolor/issues",
        "Documentation": "https://github.com/hyzhou1990/snipit-multicolor#readme",
        "Homepage": "https://github.com/hyzhou1990/snipit-multicolor",
        "Source": "https://github.com/hyzhou1990/snipit-multicolor"
    },
    "split_keywords": [
        "bioinformatics",
        " snp",
        " visualization",
        " genomics",
        " mutation",
        " phylogenetics",
        " sequence-analysis",
        " covid",
        " sars-cov-2",
        " genbank"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "083a2b6fa354af5ba9739230c2922223f46e448b1a10e010ab7b41316b54ec11",
                "md5": "bec2675fbdf801e3601de41d75b56f9c",
                "sha256": "1ad76126f5cd947ef54f0d880f8f36cc38e5b53b776972169c3cc67e67b6b63b"
            },
            "downloads": -1,
            "filename": "snipit_mc-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bec2675fbdf801e3601de41d75b56f9c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 49758,
            "upload_time": "2025-07-29T12:09:52",
            "upload_time_iso_8601": "2025-07-29T12:09:52.217499Z",
            "url": "https://files.pythonhosted.org/packages/08/3a/2b6fa354af5ba9739230c2922223f46e448b1a10e010ab7b41316b54ec11/snipit_mc-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0d00784de4a649e0453cb1c1756493d3a121dc730c6a6ef3e67526ccfa595c45",
                "md5": "6799ec4b58d58339ca354614c30891fc",
                "sha256": "f3f42290fd9cb7b4f65dde5201f59aa9807356305fea0877f96b1c047e7eae4b"
            },
            "downloads": -1,
            "filename": "snipit_mc-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "6799ec4b58d58339ca354614c30891fc",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 40179,
            "upload_time": "2025-07-29T12:09:55",
            "upload_time_iso_8601": "2025-07-29T12:09:55.079783Z",
            "url": "https://files.pythonhosted.org/packages/0d/00/784de4a649e0453cb1c1756493d3a121dc730c6a6ef3e67526ccfa595c45/snipit_mc-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-29 12:09:55",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "hyzhou1990",
    "github_project": "snipit-multicolor",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "biopython",
            "specs": [
                [
                    ">=",
                    "1.70"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.2.1"
                ]
            ]
        }
    ],
    "lcname": "snipit-mc"
}
        
Elapsed time: 2.69777s