spacy-layout


Namespacy-layout JSON
Version 0.0.10 PyPI version JSON
download
home_pagehttps://github.com/explosion/spacy-layout
SummaryUse spaCy with PDFs, Word docs and other documents
upload_time2024-12-13 13:59:55
maintainerNone
docs_urlNone
authorExplosion
requires_python>=3.10
licenseMIT
keywords
VCS
bugtrack_url
requirements spacy docling pandas srsly pytest
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <a href="https://explosion.ai"><img src="https://explosion.ai/assets/img/logo.svg" width="125" height="125" align="right" /></a>

# spaCy Layout: Process PDFs, Word documents and more with spaCy

This plugin integrates with [Docling](https://ds4sd.github.io/docling/) to bring structured processing of **PDFs**, **Word documents** and other input formats to your [spaCy](https://spacy.io) pipeline. It outputs clean, **structured data** in a text-based format and creates spaCy's familiar [`Doc`](https://spacy.io/api/doc) objects that let you access labelled text spans like sections or headings, and tables with their data converted to a `pandas.DataFrame`.

This workflow makes it easy to apply powerful **NLP techniques** to your documents, including linguistic analysis, named entity recognition, text classification and more. It's also great for implementing **chunking for RAG** pipelines.

> 📖 **Blog post:** ["From PDFs to AI-ready structured data: a deep dive"
](https://explosion.ai/blog/pdfs-nlp-structured-data) – A new modular workflow for converting PDFs and similar documents to structured data, featuring `spacy-layout` and Docling.

[![Test](https://github.com/explosion/spacy-layout/actions/workflows/test.yml/badge.svg)](https://github.com/explosion/spacy-layout/actions/workflows/test.yml)
[![Current Release Version](https://img.shields.io/github/release/explosion/spacy-layout.svg?style=flat-square&logo=github&include_prereleases)](https://github.com/explosion/spacy-layout/releases)
[![pypi Version](https://img.shields.io/pypi/v/spacy-layout.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/spacy-layout/)
[![Built with spaCy](https://img.shields.io/badge/built%20with-spaCy-09a3d5.svg?style=flat-square)](https://spacy.io)

## 📝 Usage

> ⚠️ This package requires **Python 3.10** or above.

```bash
pip install spacy-layout
```

After initializing the `spaCyLayout` preprocessor with an `nlp` object for tokenization, you can call it on a document path to convert it to structured data. The resulting `Doc` object includes layout spans that map into the original raw text and expose various attributes, including the content type and layout features.

```python
import spacy
from spacy_layout import spaCyLayout

nlp = spacy.blank("en")
layout = spaCyLayout(nlp)

# Process a document and create a spaCy Doc object
doc = layout("./starcraft.pdf")

# The text-based contents of the document
print(doc.text)
# Document layout including pages and page sizes
print(doc._.layout)
# Tables in the document and their extracted data
print(doc._.tables)
# Markdown representation of the document
print(doc._.markdown)

# Layout spans for different sections
for span in doc.spans["layout"]:
    # Document section and token and character offsets into the text
    print(span.text, span.start, span.end, span.start_char, span.end_char)
    # Section type, e.g. "text", "title", "section_header" etc.
    print(span.label_)
    # Layout features of the section, including bounding box
    print(span._.layout)
    # Closest heading to the span (accuracy depends on document structure)
    print(span._.heading)
```

If you need to process larger volumes of documents at scale, you can use the `spaCyLayout.pipe` method, which takes an iterable of paths or bytes instead and yields `Doc` objects:

```python
paths = ["one.pdf", "two.pdf", "three.pdf", ...]
for doc in layout.pipe(paths):
    print(doc._.layout)
```

After you've processed the documents, you can [serialize](https://spacy.io/usage/saving-loading#docs) the structured `Doc` objects in spaCy's efficient binary format, so you don't have to re-run the resource-intensive conversion.

spaCy also allows you to call the `nlp` object on an already created `Doc`, so you can easily apply a pipeline of components for [linguistic analysis](https://spacy.io/usage/linguistic-features) or [named entity recognition](https://spacy.io/usage/linguistic-features#named-entities), use [rule-based matching](https://spacy.io/usage/rule-based-matching) or anything else you can do with spaCy.

```python
# Load the transformer-based English pipeline
# Installation: python -m spacy download en_core_web_trf
nlp = spacy.load("en_core_web_trf")
layout = spaCyLayout(nlp)

doc = layout("./starcraft.pdf")
# Apply the pipeline to access POS tags, dependencies, entities etc.
doc = nlp(doc)
```

### Tables and tabular data

Tables are included in the layout spans with the label `"table"` and under the shortcut `Doc._.tables`. They expose a `layout` extension attribute, as well as an attribute `data`, which includes the tabular data converted to a `pandas.DataFrame`.

```python
for table in doc._.tables:
    # Token position and bounding box
    print(table.start, table.end, table._.layout)
    # pandas.DataFrame of contents
    print(table._.data)
```

By default, the span text is a placeholder `TABLE`, but you can customize how a table is rendered by providing a `display_table` callback to `spaCyLayout`, which receives the `pandas.DataFrame` of the data. This allows you to include the table figures in the document text and use them later on, e.g. during information extraction with a trained named entity recognizer or text classifier.

```python
def display_table(df: pd.DataFrame) -> str:
    return f"Table with columns: {', '.join(df.columns.tolist())}"

layout = spaCyLayout(nlp, display_table=display_table)
```

## 🎛️ API

### Data and extension attributes

```python
layout = spaCyLayout(nlp)
doc = layout("./starcraft.pdf")
print(doc._.layout)
for span in doc.spans["layout"]:
    print(span.label_, span._.layout)
```

| Attribute | Type | Description |
| --- | --- | --- |
| `Doc._.layout` | `DocLayout` | Layout features of the document. |
| `Doc._.pages` | `list[tuple[PageLayout, list[Span]]]` | Pages in the document and the spans they contain. |
| `Doc._.tables` | `list[Span]` | All tables in the document. |
| `Doc._.markdown` | `str` | Markdown representation of the document. |
| `Doc.spans["layout"]` | `spacy.tokens.SpanGroup` | The layout spans in the document. |
| `Span.label_` | `str` | The type of the extracted layout span, e.g. `"text"` or `"section_header"`. [See here](https://github.com/DS4SD/docling-core/blob/14cad33ae7f8dc011a79dd364361d2647c635466/docling_core/types/doc/labels.py) for options. |
| `Span.label` | `int` | The integer ID of the span label. |
| `Span.id` | `int` | Running index of layout span. |
| `Span._.layout` | `SpanLayout \| None` | Layout features of a layout span. |
| `Span._.heading` | `Span \| None` | Closest heading to a span, if available. |
| `Span._.data` | `pandas.DataFrame \| None` | The extracted data for table spans.

### <kbd>dataclass</kbd> PageLayout

| Attribute | Type | Description |
| --- | --- | --- |
| `page_no` | `int` | The page number (1-indexed). |
| `width` | `float` | Page with in pixels. |
| `height` | `float` | Page height in pixels. |

### <kbd>dataclass</kbd> DocLayout

| Attribute | Type | Description |
| --- | --- | --- |
| `pages` | `list[PageLayout]` | The pages in the document. |

### <kbd>dataclass</kbd> SpanLayout

| Attribute | Type | Description |
| --- | --- | --- |
| `x` | `float` | Horizontal offset of the bounding box in pixels. |
| `y` | `float` | Vertical offset of the bounding box in pixels. |
| `width` | `float` | Width of the bounding box in pixels. |
| `height` | `float` | Height of the bounding box in pixels. |
| `page_no` | `int` | Number of page the span is on. |

### <kbd>class</kbd> `spaCyLayout`

#### <kbd>method</kbd> `spaCyLayout.__init__`

Initialize the document processor.

```python
nlp = spacy.blank("en")
layout = spaCyLayout(nlp)
```

| Argument | Type | Description |
| --- | --- | --- |
| `nlp` | `spacy.language.Language` | The initialized `nlp` object to use for tokenization. |
| `separator` | `str` | Token used to separate sections in the created `Doc` object. The separator won't be part of the layout span. If `None`, no separator will be added. Defaults to `"\n\n"`. |
| `attrs` | `dict[str, str]` | Override the custom spaCy attributes. Can include `"doc_layout"`, `"doc_pages"`, `"doc_tables"`, `"doc_markdown"`, `"span_layout"`, `"span_data"`, `"span_heading"` and `"span_group"`. |
| `headings` | `list[str]` | Labels of headings to consider for `Span._.heading` detection. Defaults to `["section_header", "page_header", "title"]`. |
| `display_table` | `Callable[[pandas.DataFrame], str] \| str` | Function to generate the text-based representation of the table in the `Doc.text` or placeholder text. Defaults to `"TABLE"`. |
| `docling_options` | `dict[InputFormat, FormatOption]` | [Format options](https://ds4sd.github.io/docling/usage/#advanced-options) passed to Docling's `DocumentConverter`. |
| **RETURNS** | `spaCyLayout` | The initialized object. |

#### <kbd>method</kbd> `spaCyLayout.__call__`

Process a document and create a spaCy [`Doc`](https://spacy.io/api/doc) object containing the text content and layout spans, available via `Doc.spans["layout"]` by default.

```python
layout = spaCyLayout(nlp)
doc = layout("./starcraft.pdf")
```

| Argument | Type | Description |
| --- | --- | --- |
| `source` | `str \| Path \| bytes \| DoclingDocument` | Path of document to process, bytes or already created `DoclingDocument`. |
| **RETURNS** | `Doc` | The processed spaCy `Doc` object. |

#### <kbd>method</kbd> `spaCyLayout.pipe`

Process multiple documents and create spaCy [`Doc`](https://spacy.io/api/doc) objects. You should use this method if you're processing larger volumes of documents at scale.

```python
layout = spaCyLayout(nlp)
paths = ["one.pdf", "two.pdf", "three.pdf", ...]
docs = layout.pipe(paths)
```

| Argument | Type | Description |
| --- | --- | --- |
| `sources` | `Iterable[str \| Path \| bytes]` | Paths of documents to process or bytes. |
| **YIELDS** | `Doc` | The processed spaCy `Doc` object. |

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/explosion/spacy-layout",
    "name": "spacy-layout",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "Explosion",
    "author_email": "contact@explosion.ai",
    "download_url": "https://files.pythonhosted.org/packages/d0/e1/4eedb7a898be84d36f330aad1cf41d64abccd3577e4bbdf134b1ac0a4234/spacy_layout-0.0.10.tar.gz",
    "platform": null,
    "description": "<a href=\"https://explosion.ai\"><img src=\"https://explosion.ai/assets/img/logo.svg\" width=\"125\" height=\"125\" align=\"right\" /></a>\n\n# spaCy Layout: Process PDFs, Word documents and more with spaCy\n\nThis plugin integrates with [Docling](https://ds4sd.github.io/docling/) to bring structured processing of **PDFs**, **Word documents** and other input formats to your [spaCy](https://spacy.io) pipeline. It outputs clean, **structured data** in a text-based format and creates spaCy's familiar [`Doc`](https://spacy.io/api/doc) objects that let you access labelled text spans like sections or headings, and tables with their data converted to a `pandas.DataFrame`.\n\nThis workflow makes it easy to apply powerful **NLP techniques** to your documents, including linguistic analysis, named entity recognition, text classification and more. It's also great for implementing **chunking for RAG** pipelines.\n\n> \ud83d\udcd6 **Blog post:** [\"From PDFs to AI-ready structured data: a deep dive\"\n](https://explosion.ai/blog/pdfs-nlp-structured-data) \u2013 A new modular workflow for converting PDFs and similar documents to structured data, featuring `spacy-layout` and Docling.\n\n[![Test](https://github.com/explosion/spacy-layout/actions/workflows/test.yml/badge.svg)](https://github.com/explosion/spacy-layout/actions/workflows/test.yml)\n[![Current Release Version](https://img.shields.io/github/release/explosion/spacy-layout.svg?style=flat-square&logo=github&include_prereleases)](https://github.com/explosion/spacy-layout/releases)\n[![pypi Version](https://img.shields.io/pypi/v/spacy-layout.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/spacy-layout/)\n[![Built with spaCy](https://img.shields.io/badge/built%20with-spaCy-09a3d5.svg?style=flat-square)](https://spacy.io)\n\n## \ud83d\udcdd Usage\n\n> \u26a0\ufe0f This package requires **Python 3.10** or above.\n\n```bash\npip install spacy-layout\n```\n\nAfter initializing the `spaCyLayout` preprocessor with an `nlp` object for tokenization, you can call it on a document path to convert it to structured data. The resulting `Doc` object includes layout spans that map into the original raw text and expose various attributes, including the content type and layout features.\n\n```python\nimport spacy\nfrom spacy_layout import spaCyLayout\n\nnlp = spacy.blank(\"en\")\nlayout = spaCyLayout(nlp)\n\n# Process a document and create a spaCy Doc object\ndoc = layout(\"./starcraft.pdf\")\n\n# The text-based contents of the document\nprint(doc.text)\n# Document layout including pages and page sizes\nprint(doc._.layout)\n# Tables in the document and their extracted data\nprint(doc._.tables)\n# Markdown representation of the document\nprint(doc._.markdown)\n\n# Layout spans for different sections\nfor span in doc.spans[\"layout\"]:\n    # Document section and token and character offsets into the text\n    print(span.text, span.start, span.end, span.start_char, span.end_char)\n    # Section type, e.g. \"text\", \"title\", \"section_header\" etc.\n    print(span.label_)\n    # Layout features of the section, including bounding box\n    print(span._.layout)\n    # Closest heading to the span (accuracy depends on document structure)\n    print(span._.heading)\n```\n\nIf you need to process larger volumes of documents at scale, you can use the `spaCyLayout.pipe` method, which takes an iterable of paths or bytes instead and yields `Doc` objects:\n\n```python\npaths = [\"one.pdf\", \"two.pdf\", \"three.pdf\", ...]\nfor doc in layout.pipe(paths):\n    print(doc._.layout)\n```\n\nAfter you've processed the documents, you can [serialize](https://spacy.io/usage/saving-loading#docs) the structured `Doc` objects in spaCy's efficient binary format, so you don't have to re-run the resource-intensive conversion.\n\nspaCy also allows you to call the `nlp` object on an already created `Doc`, so you can easily apply a pipeline of components for [linguistic analysis](https://spacy.io/usage/linguistic-features) or [named entity recognition](https://spacy.io/usage/linguistic-features#named-entities), use [rule-based matching](https://spacy.io/usage/rule-based-matching) or anything else you can do with spaCy.\n\n```python\n# Load the transformer-based English pipeline\n# Installation: python -m spacy download en_core_web_trf\nnlp = spacy.load(\"en_core_web_trf\")\nlayout = spaCyLayout(nlp)\n\ndoc = layout(\"./starcraft.pdf\")\n# Apply the pipeline to access POS tags, dependencies, entities etc.\ndoc = nlp(doc)\n```\n\n### Tables and tabular data\n\nTables are included in the layout spans with the label `\"table\"` and under the shortcut `Doc._.tables`. They expose a `layout` extension attribute, as well as an attribute `data`, which includes the tabular data converted to a `pandas.DataFrame`.\n\n```python\nfor table in doc._.tables:\n    # Token position and bounding box\n    print(table.start, table.end, table._.layout)\n    # pandas.DataFrame of contents\n    print(table._.data)\n```\n\nBy default, the span text is a placeholder `TABLE`, but you can customize how a table is rendered by providing a `display_table` callback to `spaCyLayout`, which receives the `pandas.DataFrame` of the data. This allows you to include the table figures in the document text and use them later on, e.g. during information extraction with a trained named entity recognizer or text classifier.\n\n```python\ndef display_table(df: pd.DataFrame) -> str:\n    return f\"Table with columns: {', '.join(df.columns.tolist())}\"\n\nlayout = spaCyLayout(nlp, display_table=display_table)\n```\n\n## \ud83c\udf9b\ufe0f API\n\n### Data and extension attributes\n\n```python\nlayout = spaCyLayout(nlp)\ndoc = layout(\"./starcraft.pdf\")\nprint(doc._.layout)\nfor span in doc.spans[\"layout\"]:\n    print(span.label_, span._.layout)\n```\n\n| Attribute | Type | Description |\n| --- | --- | --- |\n| `Doc._.layout` | `DocLayout` | Layout features of the document. |\n| `Doc._.pages` | `list[tuple[PageLayout, list[Span]]]` | Pages in the document and the spans they contain. |\n| `Doc._.tables` | `list[Span]` | All tables in the document. |\n| `Doc._.markdown` | `str` | Markdown representation of the document. |\n| `Doc.spans[\"layout\"]` | `spacy.tokens.SpanGroup` | The layout spans in the document. |\n| `Span.label_` | `str` | The type of the extracted layout span, e.g. `\"text\"` or `\"section_header\"`. [See here](https://github.com/DS4SD/docling-core/blob/14cad33ae7f8dc011a79dd364361d2647c635466/docling_core/types/doc/labels.py) for options. |\n| `Span.label` | `int` | The integer ID of the span label. |\n| `Span.id` | `int` | Running index of layout span. |\n| `Span._.layout` | `SpanLayout \\| None` | Layout features of a layout span. |\n| `Span._.heading` | `Span \\| None` | Closest heading to a span, if available. |\n| `Span._.data` | `pandas.DataFrame \\| None` | The extracted data for table spans.\n\n### <kbd>dataclass</kbd> PageLayout\n\n| Attribute | Type | Description |\n| --- | --- | --- |\n| `page_no` | `int` | The page number (1-indexed). |\n| `width` | `float` | Page with in pixels. |\n| `height` | `float` | Page height in pixels. |\n\n### <kbd>dataclass</kbd> DocLayout\n\n| Attribute | Type | Description |\n| --- | --- | --- |\n| `pages` | `list[PageLayout]` | The pages in the document. |\n\n### <kbd>dataclass</kbd> SpanLayout\n\n| Attribute | Type | Description |\n| --- | --- | --- |\n| `x` | `float` | Horizontal offset of the bounding box in pixels. |\n| `y` | `float` | Vertical offset of the bounding box in pixels. |\n| `width` | `float` | Width of the bounding box in pixels. |\n| `height` | `float` | Height of the bounding box in pixels. |\n| `page_no` | `int` | Number of page the span is on. |\n\n### <kbd>class</kbd> `spaCyLayout`\n\n#### <kbd>method</kbd> `spaCyLayout.__init__`\n\nInitialize the document processor.\n\n```python\nnlp = spacy.blank(\"en\")\nlayout = spaCyLayout(nlp)\n```\n\n| Argument | Type | Description |\n| --- | --- | --- |\n| `nlp` | `spacy.language.Language` | The initialized `nlp` object to use for tokenization. |\n| `separator` | `str` | Token used to separate sections in the created `Doc` object. The separator won't be part of the layout span. If `None`, no separator will be added. Defaults to `\"\\n\\n\"`. |\n| `attrs` | `dict[str, str]` | Override the custom spaCy attributes. Can include `\"doc_layout\"`, `\"doc_pages\"`, `\"doc_tables\"`, `\"doc_markdown\"`, `\"span_layout\"`, `\"span_data\"`, `\"span_heading\"` and `\"span_group\"`. |\n| `headings` | `list[str]` | Labels of headings to consider for `Span._.heading` detection. Defaults to `[\"section_header\", \"page_header\", \"title\"]`. |\n| `display_table` | `Callable[[pandas.DataFrame], str] \\| str` | Function to generate the text-based representation of the table in the `Doc.text` or placeholder text. Defaults to `\"TABLE\"`. |\n| `docling_options` | `dict[InputFormat, FormatOption]` | [Format options](https://ds4sd.github.io/docling/usage/#advanced-options) passed to Docling's `DocumentConverter`. |\n| **RETURNS** | `spaCyLayout` | The initialized object. |\n\n#### <kbd>method</kbd> `spaCyLayout.__call__`\n\nProcess a document and create a spaCy [`Doc`](https://spacy.io/api/doc) object containing the text content and layout spans, available via `Doc.spans[\"layout\"]` by default.\n\n```python\nlayout = spaCyLayout(nlp)\ndoc = layout(\"./starcraft.pdf\")\n```\n\n| Argument | Type | Description |\n| --- | --- | --- |\n| `source` | `str \\| Path \\| bytes \\| DoclingDocument` | Path of document to process, bytes or already created `DoclingDocument`. |\n| **RETURNS** | `Doc` | The processed spaCy `Doc` object. |\n\n#### <kbd>method</kbd> `spaCyLayout.pipe`\n\nProcess multiple documents and create spaCy [`Doc`](https://spacy.io/api/doc) objects. You should use this method if you're processing larger volumes of documents at scale.\n\n```python\nlayout = spaCyLayout(nlp)\npaths = [\"one.pdf\", \"two.pdf\", \"three.pdf\", ...]\ndocs = layout.pipe(paths)\n```\n\n| Argument | Type | Description |\n| --- | --- | --- |\n| `sources` | `Iterable[str \\| Path \\| bytes]` | Paths of documents to process or bytes. |\n| **YIELDS** | `Doc` | The processed spaCy `Doc` object. |\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Use spaCy with PDFs, Word docs and other documents",
    "version": "0.0.10",
    "project_urls": {
        "Homepage": "https://github.com/explosion/spacy-layout",
        "Release notes": "https://github.com/explosion/spacy-layout/releases",
        "Source": "https://github.com/explosion/spacy-layout"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c7d7d9c59ca06f2af7517a2c140b93dfaf07a79f1959bf5e4eb7610dcfe817cc",
                "md5": "020ee2554de9c57daf8132240a02eb3f",
                "sha256": "9c8e84b485cc8ac40a5c01fef882131ac99a9c1ec64fd10a0184d8978e184397"
            },
            "downloads": -1,
            "filename": "spacy_layout-0.0.10-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "020ee2554de9c57daf8132240a02eb3f",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.10",
            "size": 10222,
            "upload_time": "2024-12-13T13:59:51",
            "upload_time_iso_8601": "2024-12-13T13:59:51.059044Z",
            "url": "https://files.pythonhosted.org/packages/c7/d7/d9c59ca06f2af7517a2c140b93dfaf07a79f1959bf5e4eb7610dcfe817cc/spacy_layout-0.0.10-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d0e14eedb7a898be84d36f330aad1cf41d64abccd3577e4bbdf134b1ac0a4234",
                "md5": "ee395c06342d695dfec49c5f0d1530b1",
                "sha256": "3c328fde08d632a17c3eaf79311e752345cce9b664c319312e8c53db8f27d601"
            },
            "downloads": -1,
            "filename": "spacy_layout-0.0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "ee395c06342d695dfec49c5f0d1530b1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 14233,
            "upload_time": "2024-12-13T13:59:55",
            "upload_time_iso_8601": "2024-12-13T13:59:55.726259Z",
            "url": "https://files.pythonhosted.org/packages/d0/e1/4eedb7a898be84d36f330aad1cf41d64abccd3577e4bbdf134b1ac0a4234/spacy_layout-0.0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-13 13:59:55",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "explosion",
    "github_project": "spacy-layout",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "spacy",
            "specs": [
                [
                    ">=",
                    "3.7.5"
                ]
            ]
        },
        {
            "name": "docling",
            "specs": [
                [
                    ">=",
                    "2.5.2"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "srsly",
            "specs": []
        },
        {
            "name": "pytest",
            "specs": []
        }
    ],
    "lcname": "spacy-layout"
}
        
Elapsed time: 0.39900s