SPECTRUM : Spectral Analysis in Python
==========================================
.. image:: https://badge.fury.io/py/spectrum.svg
:target: https://pypi.python.org/pypi/spectrum
.. image:: https://github.com/cokelaer/spectrum/actions/workflows/main.yml/badge.svg?branch=master
:target: https://github.com/cokelaer/spectrum/actions/workflows/main.yml
.. image:: https://coveralls.io/repos/cokelaer/spectrum/badge.png?branch=master
:target: https://coveralls.io/r/cokelaer/spectrum?branch=master
.. image:: https://anaconda.org/conda-forge/spectrum/badges/license.svg
:target: https://anaconda.org/conda-forge/spectrum
.. image:: https://anaconda.org/conda-forge/spectrum/badges/installer/conda.svg
:target: https://conda.anaconda.org/conda-forge
.. image:: https://anaconda.org/conda-forge/spectrum/badges/downloads.svg
:target: https://anaconda.org/conda-forge/spectrum
.. image:: http://joss.theoj.org/papers/e4e34e78e4a670f2ca9a6a97ce9d3b8e/status.svg
:target: http://joss.theoj.org/papers/e4e34e78e4a670f2ca9a6a97ce9d3b8e
:contributions: Please join https://github.com/cokelaer/spectrum
:contributors: https://github.com/cokelaer/spectrum/graphs/contributors
:issues: Please use https://github.com/cokelaer/spectrum/issues
:documentation: http://pyspectrum.readthedocs.io/
:Citation: Cokelaer et al, (2017), 'Spectrum': Spectral Analysis in Python, Journal of Open Source Software, 2(18), 348, doi:10.21105/joss.00348
.. image:: http://www.thomas-cokelaer.info/software/spectrum/html/_images/psd_all.png
:class: align-right
:width: 50%
**Spectrum** contains tools to estimate Power Spectral Densities using methods based on Fourier transform, Parametric methods or eigenvalues analysis:
* The Fourier methods are based upon correlogram, periodogram and Welch estimates. Standard tapering windows (Hann, Hamming, Blackman) and more exotic ones are available (DPSS, Taylor, ...).
* The parametric methods are based on Yule-Walker, BURG, MA and ARMA, covariance and modified covariance methods.
* Non-parametric methods based on eigen analysis (e.g., MUSIC) and minimum variance analysis are also implemented.
* Multitapering is also available
The targetted audience is diverse. Although the use of power spectrum of a
signal is fundamental in electrical engineering (e.g. radio communications,
radar), it has a wide range of applications from cosmology (e.g., detection of
gravitational waves in 2016), to music (pattern detection) or biology (mass
spectroscopy).
Quick Installation
=====================
**spectrum** is available on Pypi::
pip install spectrum
and **conda**::
conda config --append channels conda-forge
conda install spectrum
To install the **conda** executable itself, please see https://www.continuum.io/downloads .
Contributions
==================
Please see `github <http://github.com/cokelaer/spectrum>`_ for any issues/bugs/comments/contributions.
Changelog (summary)
===================
========== ============================================================
release description
========== ============================================================
0.9.0 * handles new numpy API (keeping back compatiblity).
* included https://github.com/cokelaer/spectrum/pull/73
thanks to @butala contribution to speed up fft.
* fix rho calculation in burg algo thanks to contri
https://github.com/cokelaer/spectrum/pull/82 from @cl445
* remove warnings/deprecation related to pkgresources, numpy
and scipy.
* ran black through entire code.
0.8.1 * move CI to github actions
* include python 3.9 support
* include PR from tikuma-lshhsc contributor to speedup
eigenfre module
* fix deprecated warnings
========== ============================================================
Some notebooks (external contributions)
-------------------------------------------
* http://nbviewer.ipython.org/gist/juhasch/5182528
Raw data
{
"_id": null,
"home_page": "http://github.com/cokelaer/spectrum",
"name": "spectrum",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Thomas Cokelaer",
"author_email": "cokelaer@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/cc/95/d8b0f22084cb179d37bf3f3121a0f617e335370a7f7ab8df0e02a2c62098/spectrum-0.9.0.tar.gz",
"platform": "Linux",
"description": "SPECTRUM : Spectral Analysis in Python\n==========================================\n\n.. image:: https://badge.fury.io/py/spectrum.svg\n :target: https://pypi.python.org/pypi/spectrum\n\n.. image:: https://github.com/cokelaer/spectrum/actions/workflows/main.yml/badge.svg?branch=master\n :target: https://github.com/cokelaer/spectrum/actions/workflows/main.yml\n\n.. image:: https://coveralls.io/repos/cokelaer/spectrum/badge.png?branch=master\n :target: https://coveralls.io/r/cokelaer/spectrum?branch=master\n\n.. image:: https://anaconda.org/conda-forge/spectrum/badges/license.svg\n :target: https://anaconda.org/conda-forge/spectrum\n\n.. image:: https://anaconda.org/conda-forge/spectrum/badges/installer/conda.svg\n :target: https://conda.anaconda.org/conda-forge\n\n.. image:: https://anaconda.org/conda-forge/spectrum/badges/downloads.svg\n :target: https://anaconda.org/conda-forge/spectrum\n\n.. image:: http://joss.theoj.org/papers/e4e34e78e4a670f2ca9a6a97ce9d3b8e/status.svg\n :target: http://joss.theoj.org/papers/e4e34e78e4a670f2ca9a6a97ce9d3b8e\n\n\n\n:contributions: Please join https://github.com/cokelaer/spectrum\n:contributors: https://github.com/cokelaer/spectrum/graphs/contributors\n:issues: Please use https://github.com/cokelaer/spectrum/issues\n:documentation: http://pyspectrum.readthedocs.io/\n:Citation: Cokelaer et al, (2017), 'Spectrum': Spectral Analysis in Python, Journal of Open Source Software, 2(18), 348, doi:10.21105/joss.00348\n\n\n\n.. image:: http://www.thomas-cokelaer.info/software/spectrum/html/_images/psd_all.png\n :class: align-right\n :width: 50%\n\n**Spectrum** contains tools to estimate Power Spectral Densities using methods based on Fourier transform, Parametric methods or eigenvalues analysis:\n\n * The Fourier methods are based upon correlogram, periodogram and Welch estimates. Standard tapering windows (Hann, Hamming, Blackman) and more exotic ones are available (DPSS, Taylor, ...).\n * The parametric methods are based on Yule-Walker, BURG, MA and ARMA, covariance and modified covariance methods.\n * Non-parametric methods based on eigen analysis (e.g., MUSIC) and minimum variance analysis are also implemented.\n * Multitapering is also available\n\n\nThe targetted audience is diverse. Although the use of power spectrum of a\nsignal is fundamental in electrical engineering (e.g. radio communications,\nradar), it has a wide range of applications from cosmology (e.g., detection of\ngravitational waves in 2016), to music (pattern detection) or biology (mass\nspectroscopy).\n\n\nQuick Installation\n=====================\n\n**spectrum** is available on Pypi::\n\n pip install spectrum\n\nand **conda**::\n\n conda config --append channels conda-forge\n conda install spectrum\n\nTo install the **conda** executable itself, please see https://www.continuum.io/downloads .\n\nContributions\n==================\n\nPlease see `github <http://github.com/cokelaer/spectrum>`_ for any issues/bugs/comments/contributions.\n\nChangelog (summary)\n===================\n\n========== ============================================================\nrelease description\n========== ============================================================\n0.9.0 * handles new numpy API (keeping back compatiblity).\n * included https://github.com/cokelaer/spectrum/pull/73\n thanks to @butala contribution to speed up fft.\n * fix rho calculation in burg algo thanks to contri\n https://github.com/cokelaer/spectrum/pull/82 from @cl445\n * remove warnings/deprecation related to pkgresources, numpy\n and scipy.\n * ran black through entire code.\n0.8.1 * move CI to github actions\n * include python 3.9 support\n * include PR from tikuma-lshhsc contributor to speedup\n eigenfre module\n * fix deprecated warnings\n========== ============================================================\n\n\n\nSome notebooks (external contributions)\n-------------------------------------------\n\n* http://nbviewer.ipython.org/gist/juhasch/5182528\n",
"bugtrack_url": null,
"license": "new BSD",
"summary": "Spectrum Analysis Tools",
"version": "0.9.0",
"project_urls": {
"Homepage": "http://github.com/cokelaer/spectrum"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "cc95d8b0f22084cb179d37bf3f3121a0f617e335370a7f7ab8df0e02a2c62098",
"md5": "e5e2fcd687a99de354f1ba574adb2cc7",
"sha256": "4539347e7cdb9ea4ea63ca76033eed8bf54f283dc4a42e966464734c279809cd"
},
"downloads": -1,
"filename": "spectrum-0.9.0.tar.gz",
"has_sig": false,
"md5_digest": "e5e2fcd687a99de354f1ba574adb2cc7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 231499,
"upload_time": "2024-12-08T22:40:49",
"upload_time_iso_8601": "2024-12-08T22:40:49.555429Z",
"url": "https://files.pythonhosted.org/packages/cc/95/d8b0f22084cb179d37bf3f3121a0f617e335370a7f7ab8df0e02a2c62098/spectrum-0.9.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-08 22:40:49",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "cokelaer",
"github_project": "spectrum",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "easydev",
"specs": []
},
{
"name": "numpy",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "matplotlib",
"specs": []
}
],
"lcname": "spectrum"
}