# SPROCLIB - Standard Process Control Library
A comprehensive Python library for chemical process control, providing essential classes and functions for PID control, process modeling, simulation, optimization, and advanced control techniques.
**SPROCLIB provides a semantic API for chemical plant design that uses familiar patterns from machine learning frameworks like TensorFlow and Keras.**
## Installation
```bash
pip install sproclib
```
## Features
- **Semantic Plant Design**: Intuitive API similar to ML frameworks for building complex chemical processes
- **Process Units**: CSTR, pumps, heat exchangers, distillation columns, reactors, and tanks
- **Economic Optimization**: Built-in optimization algorithms for cost minimization and profit maximization
- **PID Controllers**: Classical and advanced PID control implementations with auto-tuning
- **Analysis Tools**: Transfer functions, simulation, and system identification
- **Advanced Control**: Model predictive control, state-space controllers, and IMC
- **Transport Models**: Continuous and batch transport for liquids and solids
## Quick Start
Create and optimize a chemical plant in just a few lines:
```python
from sproclib.unit.plant import ChemicalPlant
from sproclib.unit.pump import CentrifugalPump
from sproclib.unit.reactor import CSTR
# Define plant
plant = ChemicalPlant(name="Process Plant")
# Add units
plant.add(CentrifugalPump(H0=50.0, eta=0.75), name="feed_pump")
plant.add(CSTR(V=150.0, k0=7.2e10), name="reactor")
# Connect units
plant.connect("feed_pump", "reactor", "feed_stream")
# Configure optimization
plant.compile(
optimizer="economic",
loss="total_cost",
metrics=["profit", "conversion"]
)
# Optimize operations
plant.optimize(target_production=1000.0)
```
## Advanced Example
```python
# Traditional PID control example
import sproclib as spc
# Create a PID controller
controller = spc.PIDController(kp=1.0, ki=0.1, kd=0.05)
# Create a tank model
tank = spc.Tank(volume=100, area=10)
# Simulate step response
response = spc.step_response(tank, time_span=100)
```
## Requirements
- Python 3.8+
- NumPy >= 1.20.0
- SciPy >= 1.7.0
- Matplotlib >= 3.3.0
## License
MIT License
## Author
Thorsten Gressling <gressling@paramus.ai>
Raw data
{
"_id": null,
"home_page": "https://github.com/gressling/sproclib",
"name": "sproclib",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "process control, chemical engineering, PID, simulation, optimization, semantic API, machine learning",
"author": "Thorsten Gressling",
"author_email": "Thorsten Gressling <gressling@paramus.ai>",
"download_url": "https://files.pythonhosted.org/packages/4b/53/4d815ded191181cb990802d27fd516d3e211a5ebb9535f59d04c83cd6b10/sproclib-2.1.0.tar.gz",
"platform": null,
"description": "# SPROCLIB - Standard Process Control Library\r\n\r\nA comprehensive Python library for chemical process control, providing essential classes and functions for PID control, process modeling, simulation, optimization, and advanced control techniques.\r\n\r\n**SPROCLIB provides a semantic API for chemical plant design that uses familiar patterns from machine learning frameworks like TensorFlow and Keras.**\r\n\r\n## Installation\r\n\r\n```bash\r\npip install sproclib\r\n```\r\n\r\n## Features\r\n\r\n- **Semantic Plant Design**: Intuitive API similar to ML frameworks for building complex chemical processes\r\n- **Process Units**: CSTR, pumps, heat exchangers, distillation columns, reactors, and tanks\r\n- **Economic Optimization**: Built-in optimization algorithms for cost minimization and profit maximization\r\n- **PID Controllers**: Classical and advanced PID control implementations with auto-tuning\r\n- **Analysis Tools**: Transfer functions, simulation, and system identification\r\n- **Advanced Control**: Model predictive control, state-space controllers, and IMC\r\n- **Transport Models**: Continuous and batch transport for liquids and solids\r\n\r\n## Quick Start\r\n\r\nCreate and optimize a chemical plant in just a few lines:\r\n\r\n```python\r\nfrom sproclib.unit.plant import ChemicalPlant\r\nfrom sproclib.unit.pump import CentrifugalPump\r\nfrom sproclib.unit.reactor import CSTR\r\n\r\n# Define plant\r\nplant = ChemicalPlant(name=\"Process Plant\")\r\n\r\n# Add units\r\nplant.add(CentrifugalPump(H0=50.0, eta=0.75), name=\"feed_pump\")\r\nplant.add(CSTR(V=150.0, k0=7.2e10), name=\"reactor\")\r\n\r\n# Connect units\r\nplant.connect(\"feed_pump\", \"reactor\", \"feed_stream\")\r\n\r\n# Configure optimization\r\nplant.compile(\r\n optimizer=\"economic\",\r\n loss=\"total_cost\",\r\n metrics=[\"profit\", \"conversion\"]\r\n)\r\n\r\n# Optimize operations\r\nplant.optimize(target_production=1000.0)\r\n```\r\n\r\n## Advanced Example\r\n\r\n```python\r\n# Traditional PID control example\r\nimport sproclib as spc\r\n\r\n# Create a PID controller\r\ncontroller = spc.PIDController(kp=1.0, ki=0.1, kd=0.05)\r\n\r\n# Create a tank model\r\ntank = spc.Tank(volume=100, area=10)\r\n\r\n# Simulate step response\r\nresponse = spc.step_response(tank, time_span=100)\r\n```\r\n\r\n## Requirements\r\n\r\n- Python 3.8+\r\n- NumPy >= 1.20.0\r\n- SciPy >= 1.7.0\r\n- Matplotlib >= 3.3.0\r\n\r\n## License\r\n\r\nMIT License\r\n\r\n## Author\r\n\r\nThorsten Gressling <gressling@paramus.ai>\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Standard Process Control Library for chemical process control - Semantic API for chemical plant design using familiar ML patterns",
"version": "2.1.0",
"project_urls": {
"Documentation": "https://sproclib.readthedocs.io/en/latest/",
"Homepage": "https://github.com/gressling/sproclib",
"Issues": "https://github.com/gressling/sproclib/issues",
"Repository": "https://github.com/gressling/sproclib"
},
"split_keywords": [
"process control",
" chemical engineering",
" pid",
" simulation",
" optimization",
" semantic api",
" machine learning"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "029683d92349f04b0562d22bde13de4d6d5d9fe4dc1041da14c8420103cb207d",
"md5": "19ceb768804bfc63227577f907f77071",
"sha256": "d18b9b64702766543a9229243456add3373cb45fb61bb3da39f456ee5507df84"
},
"downloads": -1,
"filename": "sproclib-2.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "19ceb768804bfc63227577f907f77071",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 478374,
"upload_time": "2025-07-12T15:10:30",
"upload_time_iso_8601": "2025-07-12T15:10:30.276073Z",
"url": "https://files.pythonhosted.org/packages/02/96/83d92349f04b0562d22bde13de4d6d5d9fe4dc1041da14c8420103cb207d/sproclib-2.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4b534d815ded191181cb990802d27fd516d3e211a5ebb9535f59d04c83cd6b10",
"md5": "20e1a72efae6f2eeff62a0a734989ea4",
"sha256": "87228091dc5db2e1fe28d7bcb5bb4dd0fd06f34886d0fa5b211851f5d85b6c40"
},
"downloads": -1,
"filename": "sproclib-2.1.0.tar.gz",
"has_sig": false,
"md5_digest": "20e1a72efae6f2eeff62a0a734989ea4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 13987396,
"upload_time": "2025-07-12T15:10:47",
"upload_time_iso_8601": "2025-07-12T15:10:47.096596Z",
"url": "https://files.pythonhosted.org/packages/4b/53/4d815ded191181cb990802d27fd516d3e211a5ebb9535f59d04c83cd6b10/sproclib-2.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-12 15:10:47",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "gressling",
"github_project": "sproclib",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "numpy",
"specs": [
[
">=",
"1.20.0"
]
]
},
{
"name": "scipy",
"specs": [
[
">=",
"1.7.0"
]
]
},
{
"name": "matplotlib",
"specs": [
[
">=",
"3.4.0"
]
]
},
{
"name": "cvxpy",
"specs": [
[
">=",
"1.2.0"
]
]
},
{
"name": "pyomo",
"specs": [
[
">=",
"6.0.0"
]
]
},
{
"name": "pandas",
"specs": [
[
">=",
"1.3.0"
]
]
},
{
"name": "jupyter",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "python-control",
"specs": [
[
">=",
"0.9.0"
]
]
},
{
"name": "pytest",
"specs": [
[
">=",
"6.0.0"
]
]
},
{
"name": "pytest-cov",
"specs": [
[
">=",
"2.12.0"
]
]
},
{
"name": "sphinx",
"specs": [
[
">=",
"8.0.0"
]
]
},
{
"name": "sphinx-rtd-theme",
"specs": [
[
">=",
"3.0.0"
]
]
},
{
"name": "sphinx-autodoc-typehints",
"specs": [
[
">=",
"3.0.0"
]
]
},
{
"name": "myst-parser",
"specs": [
[
">=",
"4.0.0"
]
]
},
{
"name": "docutils",
"specs": [
[
">=",
"0.21.0"
]
]
},
{
"name": "pillow",
"specs": [
[
">=",
"9.0.0"
]
]
}
],
"lcname": "sproclib"
}