# startorch
<p align="center">
<a href="https://github.com/durandtibo/startorch/actions">
<img alt="CI" src="https://github.com/durandtibo/startorch/workflows/CI/badge.svg">
</a>
<a href="https://durandtibo.github.io/startorch/">
<img alt="Documentation" src="https://github.com/durandtibo/startorch/workflows/Documentation/badge.svg">
</a>
<a href="https://github.com/durandtibo/startorch/actions">
<img alt="Nightly Tests" src="https://github.com/durandtibo/startorch/workflows/Nightly%20Tests/badge.svg">
</a>
<a href="https://github.com/durandtibo/startorch/actions">
<img alt="Nightly Package Tests" src="https://github.com/durandtibo/startorch/workflows/Nightly%20Package%20Tests/badge.svg">
</a>
<br/>
<a href="https://codecov.io/gh/durandtibo/startorch">
<img alt="Codecov" src="https://codecov.io/gh/durandtibo/startorch/branch/main/graph/badge.svg">
</a>
<a href="https://codeclimate.com/github/durandtibo/startorch/maintainability">
<img src="https://api.codeclimate.com/v1/badges/05a12c503bf3be80a00b/maintainability" />
</a>
<a href="https://codeclimate.com/github/durandtibo/startorch/test_coverage">
<img src="https://api.codeclimate.com/v1/badges/05a12c503bf3be80a00b/test_coverage" />
</a>
<br/>
<a href="https://github.com/psf/black">
<img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-000000.svg">
</a>
<a href="https://google.github.io/styleguide/pyguide.html#s3.8-comments-and-docstrings">
<img alt="Doc style: google" src="https://img.shields.io/badge/%20style-google-3666d6.svg">
</a>
<a href="https://github.com/astral-sh/ruff">
<img src="https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json" alt="Ruff" style="max-width:100%;">
</a>
<a href="https://github.com/guilatrova/tryceratops">
<img alt="Doc style: google" src="https://img.shields.io/badge/try%2Fexcept%20style-tryceratops%20%F0%9F%A6%96%E2%9C%A8-black">
</a>
<br/>
<a href="https://pypi.org/project/startorch/">
<img alt="PYPI version" src="https://img.shields.io/pypi/v/startorch">
</a>
<a href="https://pypi.org/project/startorch/">
<img alt="Python" src="https://img.shields.io/pypi/pyversions/startorch.svg">
</a>
<a href="https://opensource.org/licenses/BSD-3-Clause">
<img alt="BSD-3-Clause" src="https://img.shields.io/pypi/l/startorch">
</a>
<br/>
<a href="https://pepy.tech/project/startorch">
<img alt="Downloads" src="https://static.pepy.tech/badge/startorch">
</a>
<a href="https://pepy.tech/project/startorch">
<img alt="Monthly downloads" src="https://static.pepy.tech/badge/startorch/month">
</a>
<br/>
</p>
---
## Overview
Collecting datasets to train Machine Learning models can be time consuming.
Another alternative is to use synthetic datasets.
`startorch` is a Python library to generate synthetic time-series.
As the name suggest, `startorch` relies mostly on PyTorch to generate the time series and to control
the randomness.
`startorch` is built to be modular, flexible and extensible.
Below show some generated sequences by `startorch` where the values are sampled from different
distribution.
<table align="center">
<tr>
<td><img src="https://durandtibo.github.io/startorch/assets/figures/uniform.png" width="400" align="center"></td>
<td><img src="https://durandtibo.github.io/startorch/assets/figures/log-uniform.png" width="400" align="center"></td>
</tr>
<tr>
<td align="center">uniform</td>
<td align="center">log-uniform</td>
</tr>
<tr>
<td><img src="https://durandtibo.github.io/startorch/assets/figures/sinewave.png" width="400" align="center"></td>
<td><img src="https://durandtibo.github.io/startorch/assets/figures/wiener.png" width="400" align="center"></td>
</tr>
<tr>
<td align="center">sine wave</td>
<td align="center">Wiener process</td>
</tr>
</table>
- [Documentation](https://durandtibo.github.io/startorch/)
- [Installation](https://durandtibo.github.io/startorch/get_started/)
- [Contributing](#contributing)
- [API stability](#api-stability)
- [License](#license)
## Dependencies
| `startorch` | `batchtensor` | `coola` | `objectory` | `numpy` | `torch` | `iden`<sup>*</sup> | `matplotlib`<sup>*</sup> | `plotly`<sup>*</sup> | `python` |
|-------------|----------------|--------------|--------------|---------------|--------------|--------------------|--------------------------|----------------------|---------------|
| `main` | `>=0.0.1,<0.1` | `>=0.2,<1.0` | `>=0.1,<1.0` | `>=1.22,<2.0` | `>=2.0,<3.0` | `>=0.0.2,<0.1` | `>=3.6,<4.0` | `>=5.0,<6.0` | `>=3.9,<3.12` |
| `0.1.0` | `>=0.0.1,<0.1` | `>=0.2,<1.0` | `>=0.1,<1.0` | `>=1.22,<2.0` | `>=2.0,<3.0` | `>=0.0.2,<0.1` | `>=3.6,<4.0` | `>=5.0,<6.0` | `>=3.9,<3.12` |
<sup>*</sup> indicates an optional dependency
<details>
<summary>older versions</summary>
| `startorch` | `coola` | `objectory` | `redcat` | `torch` | `matplotlib`<sup>*</sup> | `plotly`<sup>*</sup> | `python` |
|-------------|--------------------|------------------|--------------------|--------------|--------------------------|----------------------|---------------|
| `0.0.8` | `>=0.0.20,<0.2` | `>=0.0.7,<0.2` | `>=0.0.16,<0.1` | `>=2.0,<3.0` | `>=3.6,<4.0` | `>=5.12,<6.0` | `>=3.9,<3.12` |
| `0.0.7` | `>=0.0.20,<0.0.25` | `>=0.0.7,<0.0.9` | `>=0.0.16,<0.0.18` | `>=2.0,<2.2` | `>=3.6,<3.9` | `>=5.12,<5.18` | `>=3.9,<3.12` |
| `0.0.6` | `>=0.0.20,<0.0.25` | `>=0.0.7,<0.0.9` | `>=0.0.16,<0.0.18` | `>=2.0,<2.2` | `>=3.6,<3.9` | | `>=3.9,<3.12` |
| `0.0.5` | `>=0.0.20,<0.0.24` | `>=0.0.7,<0.0.8` | `>=0.0.16,<0.0.17` | `>=2.0,<2.1` | `>=3.6,<3.9` | | `>=3.9,<3.12` |
| `0.0.4` | `>=0.0.20,<0.0.24` | `>=0.0.7,<0.0.8` | `>=0.0.16,<0.0.17` | `>=2.0,<2.1` | `>=3.6,<3.9` | | `>=3.9,<3.12` |
| `0.0.3` | `>=0.0.20,<0.0.24` | `>=0.0.7,<0.0.8` | `>=0.0.9,<0.0.10` | `>=2.0,<2.1` | `>=3.6,<3.9` | | `>=3.9,<3.12` |
</details>
## Contributing
Please check the instructions in [CONTRIBUTING.md](.github/CONTRIBUTING.md).
## API stability
:warning: While `startorch` is in development stage, no API is guaranteed to be stable from one
release to the next.
In fact, it is very likely that the API will change multiple times before a stable 1.0.0 release.
In practice, this means that upgrading `startorch` to a new version will possibly break any code
that was using the old version of `startorch`.
## License
`startorch` is licensed under BSD 3-Clause "New" or "Revised" license available
in [LICENSE](LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/durandtibo/startorch",
"name": "startorch",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9,<3.13",
"maintainer_email": "",
"keywords": "synthetic,time-series,pytorch",
"author": "Thibaut Durand",
"author_email": "durand.tibo+gh@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/a8/99/8991fe95f1038c05e66f14e5e8a3fe287c2f24207210550eac71c02507ac/startorch-0.1.0.tar.gz",
"platform": null,
"description": "# startorch\n\n<p align=\"center\">\n <a href=\"https://github.com/durandtibo/startorch/actions\">\n <img alt=\"CI\" src=\"https://github.com/durandtibo/startorch/workflows/CI/badge.svg\">\n </a>\n <a href=\"https://durandtibo.github.io/startorch/\">\n <img alt=\"Documentation\" src=\"https://github.com/durandtibo/startorch/workflows/Documentation/badge.svg\">\n </a>\n <a href=\"https://github.com/durandtibo/startorch/actions\">\n <img alt=\"Nightly Tests\" src=\"https://github.com/durandtibo/startorch/workflows/Nightly%20Tests/badge.svg\">\n </a>\n <a href=\"https://github.com/durandtibo/startorch/actions\">\n <img alt=\"Nightly Package Tests\" src=\"https://github.com/durandtibo/startorch/workflows/Nightly%20Package%20Tests/badge.svg\">\n </a>\n <br/>\n <a href=\"https://codecov.io/gh/durandtibo/startorch\">\n <img alt=\"Codecov\" src=\"https://codecov.io/gh/durandtibo/startorch/branch/main/graph/badge.svg\">\n </a>\n <a href=\"https://codeclimate.com/github/durandtibo/startorch/maintainability\">\n <img src=\"https://api.codeclimate.com/v1/badges/05a12c503bf3be80a00b/maintainability\" />\n </a>\n <a href=\"https://codeclimate.com/github/durandtibo/startorch/test_coverage\">\n <img src=\"https://api.codeclimate.com/v1/badges/05a12c503bf3be80a00b/test_coverage\" />\n </a>\n <br/>\n <a href=\"https://github.com/psf/black\">\n <img alt=\"Code style: black\" src=\"https://img.shields.io/badge/code%20style-black-000000.svg\">\n </a>\n <a href=\"https://google.github.io/styleguide/pyguide.html#s3.8-comments-and-docstrings\">\n <img alt=\"Doc style: google\" src=\"https://img.shields.io/badge/%20style-google-3666d6.svg\">\n </a>\n <a href=\"https://github.com/astral-sh/ruff\">\n <img src=\"https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json\" alt=\"Ruff\" style=\"max-width:100%;\">\n </a>\n <a href=\"https://github.com/guilatrova/tryceratops\">\n <img alt=\"Doc style: google\" src=\"https://img.shields.io/badge/try%2Fexcept%20style-tryceratops%20%F0%9F%A6%96%E2%9C%A8-black\">\n </a>\n <br/>\n <a href=\"https://pypi.org/project/startorch/\">\n <img alt=\"PYPI version\" src=\"https://img.shields.io/pypi/v/startorch\">\n </a>\n <a href=\"https://pypi.org/project/startorch/\">\n <img alt=\"Python\" src=\"https://img.shields.io/pypi/pyversions/startorch.svg\">\n </a>\n <a href=\"https://opensource.org/licenses/BSD-3-Clause\">\n <img alt=\"BSD-3-Clause\" src=\"https://img.shields.io/pypi/l/startorch\">\n </a>\n <br/>\n <a href=\"https://pepy.tech/project/startorch\">\n <img alt=\"Downloads\" src=\"https://static.pepy.tech/badge/startorch\">\n </a>\n <a href=\"https://pepy.tech/project/startorch\">\n <img alt=\"Monthly downloads\" src=\"https://static.pepy.tech/badge/startorch/month\">\n </a>\n <br/>\n</p>\n\n---\n\n## Overview\n\nCollecting datasets to train Machine Learning models can be time consuming.\nAnother alternative is to use synthetic datasets.\n`startorch` is a Python library to generate synthetic time-series.\nAs the name suggest, `startorch` relies mostly on PyTorch to generate the time series and to control\nthe randomness.\n`startorch` is built to be modular, flexible and extensible.\nBelow show some generated sequences by `startorch` where the values are sampled from different\ndistribution.\n\n<table align=\"center\">\n <tr>\n <td><img src=\"https://durandtibo.github.io/startorch/assets/figures/uniform.png\" width=\"400\" align=\"center\"></td>\n <td><img src=\"https://durandtibo.github.io/startorch/assets/figures/log-uniform.png\" width=\"400\" align=\"center\"></td>\n </tr>\n <tr>\n <td align=\"center\">uniform</td>\n <td align=\"center\">log-uniform</td>\n </tr>\n <tr>\n <td><img src=\"https://durandtibo.github.io/startorch/assets/figures/sinewave.png\" width=\"400\" align=\"center\"></td>\n <td><img src=\"https://durandtibo.github.io/startorch/assets/figures/wiener.png\" width=\"400\" align=\"center\"></td>\n </tr>\n <tr>\n <td align=\"center\">sine wave</td>\n <td align=\"center\">Wiener process</td>\n </tr>\n</table>\n\n- [Documentation](https://durandtibo.github.io/startorch/)\n- [Installation](https://durandtibo.github.io/startorch/get_started/)\n- [Contributing](#contributing)\n- [API stability](#api-stability)\n- [License](#license)\n\n## Dependencies\n\n| `startorch` | `batchtensor` | `coola` | `objectory` | `numpy` | `torch` | `iden`<sup>*</sup> | `matplotlib`<sup>*</sup> | `plotly`<sup>*</sup> | `python` |\n|-------------|----------------|--------------|--------------|---------------|--------------|--------------------|--------------------------|----------------------|---------------|\n| `main` | `>=0.0.1,<0.1` | `>=0.2,<1.0` | `>=0.1,<1.0` | `>=1.22,<2.0` | `>=2.0,<3.0` | `>=0.0.2,<0.1` | `>=3.6,<4.0` | `>=5.0,<6.0` | `>=3.9,<3.12` |\n| `0.1.0` | `>=0.0.1,<0.1` | `>=0.2,<1.0` | `>=0.1,<1.0` | `>=1.22,<2.0` | `>=2.0,<3.0` | `>=0.0.2,<0.1` | `>=3.6,<4.0` | `>=5.0,<6.0` | `>=3.9,<3.12` |\n\n<sup>*</sup> indicates an optional dependency\n\n<details>\n <summary>older versions</summary>\n\n| `startorch` | `coola` | `objectory` | `redcat` | `torch` | `matplotlib`<sup>*</sup> | `plotly`<sup>*</sup> | `python` |\n|-------------|--------------------|------------------|--------------------|--------------|--------------------------|----------------------|---------------|\n| `0.0.8` | `>=0.0.20,<0.2` | `>=0.0.7,<0.2` | `>=0.0.16,<0.1` | `>=2.0,<3.0` | `>=3.6,<4.0` | `>=5.12,<6.0` | `>=3.9,<3.12` |\n| `0.0.7` | `>=0.0.20,<0.0.25` | `>=0.0.7,<0.0.9` | `>=0.0.16,<0.0.18` | `>=2.0,<2.2` | `>=3.6,<3.9` | `>=5.12,<5.18` | `>=3.9,<3.12` |\n| `0.0.6` | `>=0.0.20,<0.0.25` | `>=0.0.7,<0.0.9` | `>=0.0.16,<0.0.18` | `>=2.0,<2.2` | `>=3.6,<3.9` | | `>=3.9,<3.12` |\n| `0.0.5` | `>=0.0.20,<0.0.24` | `>=0.0.7,<0.0.8` | `>=0.0.16,<0.0.17` | `>=2.0,<2.1` | `>=3.6,<3.9` | | `>=3.9,<3.12` |\n| `0.0.4` | `>=0.0.20,<0.0.24` | `>=0.0.7,<0.0.8` | `>=0.0.16,<0.0.17` | `>=2.0,<2.1` | `>=3.6,<3.9` | | `>=3.9,<3.12` |\n| `0.0.3` | `>=0.0.20,<0.0.24` | `>=0.0.7,<0.0.8` | `>=0.0.9,<0.0.10` | `>=2.0,<2.1` | `>=3.6,<3.9` | | `>=3.9,<3.12` |\n\n</details>\n\n## Contributing\n\nPlease check the instructions in [CONTRIBUTING.md](.github/CONTRIBUTING.md).\n\n## API stability\n\n:warning: While `startorch` is in development stage, no API is guaranteed to be stable from one\nrelease to the next.\nIn fact, it is very likely that the API will change multiple times before a stable 1.0.0 release.\nIn practice, this means that upgrading `startorch` to a new version will possibly break any code\nthat was using the old version of `startorch`.\n\n## License\n\n`startorch` is licensed under BSD 3-Clause \"New\" or \"Revised\" license available\nin [LICENSE](LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "synthetic time-series generator in PyTorch",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/durandtibo/startorch",
"Repository": "https://github.com/durandtibo/startorch"
},
"split_keywords": [
"synthetic",
"time-series",
"pytorch"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "87a60c03b8f8c10f657fc79970c2b8eb2fb90ca0797b69f8c0fa3a207f8fc01b",
"md5": "6d659b8a7a1bf5927ff190a7a6892d89",
"sha256": "762a8537019ac82e06dc53d758de5f4a05002a3cee18f2579277cc053d03e9d3"
},
"downloads": -1,
"filename": "startorch-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6d659b8a7a1bf5927ff190a7a6892d89",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9,<3.13",
"size": 123079,
"upload_time": "2024-03-19T02:21:54",
"upload_time_iso_8601": "2024-03-19T02:21:54.806899Z",
"url": "https://files.pythonhosted.org/packages/87/a6/0c03b8f8c10f657fc79970c2b8eb2fb90ca0797b69f8c0fa3a207f8fc01b/startorch-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a8998991fe95f1038c05e66f14e5e8a3fe287c2f24207210550eac71c02507ac",
"md5": "9e8fb9a3f9f7c59a64aef6f2325be51d",
"sha256": "a5bc6f3a8cd9b1aea71e93a481cfed2876aa816e1be8489c4794fdfba53f3f17"
},
"downloads": -1,
"filename": "startorch-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "9e8fb9a3f9f7c59a64aef6f2325be51d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9,<3.13",
"size": 63920,
"upload_time": "2024-03-19T02:21:56",
"upload_time_iso_8601": "2024-03-19T02:21:56.396589Z",
"url": "https://files.pythonhosted.org/packages/a8/99/8991fe95f1038c05e66f14e5e8a3fe287c2f24207210550eac71c02507ac/startorch-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-19 02:21:56",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "durandtibo",
"github_project": "startorch",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "startorch"
}