statds


Namestatds JSON
Version 1.1.5 PyPI version JSON
download
home_pagehttps://github.com/kdis-lab/StaTDS
SummaryLibrary for statistical testing and comparison of algorithm results
upload_time2024-03-30 07:27:31
maintainerNone
docs_urlNone
authorChristian Luna Escudero, Antonio R. Moya Martín-Castaño, José María Luna Ariza, Sebastián Ventura Soto
requires_pythonNone
licenseNone
keywords test statistical parametrics tests no parametrics tests comparare algorithms results post-hoc tests
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ![https://github.com/kdis-lab/StaTDS](https://raw.githubusercontent.com/kdis-lab/StaTDS/master/assets/statds.png) Hi, StaTDS is a library for statistical testing and comparison of algorithm results 👋
## Statistical Tests for Data Science (StaTDS)

StaTDS is a library for mathematicians, scientists, and engineers. It includes various tools to facilitate statistical analysis given a set of data samples. Within this library, you will find a wide range of statistical tests to streamline the process when conducting comparative or sample studies.

![https://github.com/kdis-lab/StaTDS](https://raw.githubusercontent.com/kdis-lab/StaTDS/master/assets/banner-lib.png)

[![YouTube Channel Subscribers](https://img.shields.io/youtube/channel/subscribers/UCRuhSEuWAKQuCLQmoFim5Hw)](https://www.youtube.com/@StaTDS?sub_confirmation=1) ![GitHub Followers](https://img.shields.io/github/followers/kdis-lab?style=social) ![GitHub Followers](https://img.shields.io/github/stars/kdis-lab/StaTDS?style=social)  ![Pypi download](https://img.shields.io/pypi/dm/statds)

### Available statistical test

#### **Normality**

| Name                        | Function                              |
|-----------------------------|---------------------------------------|
| Shapiro-Wilk                | normality.shapiro_wilk_normality      |
| D'Agostino-Pearson          | normality.d_agostino_pearson          |
| Kolmogorov-Smirnov          | normality.kolmogorov_smirnov          |


#### **Homoscedasticity**

| Name                        | Function                              |
|-----------------------------|---------------------------------------|
| Levene                      | homoscedasticity.levene               |
| Bartlett                    | homoscedasticity.bartlett             |


#### **Parametrics**

| Name                        | Function                              | Type Comparisons |
|-----------------------------|---------------------------------------|------------------|
| T Test paired               | parametrics.t_test_paired             | Paired           |
| T Test unpaired             | parametrics.t_test_unpaired           | Paired           |
| ANOVA between cases         | parametrics.anova_cases               | Multiple         |
| ANOVA within cases          | parametrics.anova_within_cases        | Multiple         |

#### **Non Parametrics**

| Name                        | Function                              | Type Comparisons |
|-----------------------------|---------------------------------------|------------------|
| Wilcoxon                    | no_parametrics.wilconxon              | Paired           |
| Binomial Sign               | no_parametrics.binomial               | Paired           |
| Mann-Whitney U              | no_parametrics.mannwhitneyu           | Paired           |
| Friedman                    | no_parametrics.friedman               | Multiple         |
| Friedman + Iman-Davenport   | no_parametrics.iman_davenport         | Multiple         |
| Friedman Aligned Ranks      | no_parametrics.friedman_aligned_ranks | Multiple         |
| Quade                       | no_parametrics.quade                  | Multiple         |
| Kruskal-Wallis              | no_parametrics.kruskal_wallis         | Multiple         |


##### **Post-hoc**

| Name                        | Function                              |
|-----------------------------|---------------------------------------|
| Nemenyi                     | no_parametrics.nemenyi                |
| Bonferroni                  | no_parametrics.bonferroni             |
| Li                          | no_parametrics.li                     |
| Holm                        | no_parametrics.holm                   |
| Holland                     | no_parametrics.holland                |
| Finner                      | no_parametrics.finner                 |
| Hochberg                    | no_parametrics.hochberg               |
| Hommel                      | no_parametrics.hommel                 |
| Rom                         | no_parametrics.rom                    |
| Shaffer                     | no_parametrics.shaffer                |

## Developed in:
![Python](https://img.shields.io/badge/Python-yellow?style=for-the-badge&logo=python&logoColor=white&labelColor=101010)

## Authors

- [@ChrisLe7](https://www.github.com/ChrisLe7)
- [@anmoya2](https://github.com/anmoya2)
- [@jmluna](https://github.com/jmluna)
- [@sebastianventura](https://github.com/sebastianventura)


## Documentación
You can find all documentation in [Documentation Folder](https://github.com/kdis-lab/StaTDS), [Web Docs](https://github.com/kdis-lab/StaTDS) or [Youtube Channel](https://www.youtube.com/@StaTDS).


## Installation

StaTDS could be downloaded using two different ways: using pip or git as command line or docker container. 

### Using Git repository
The installation process for Git is detailed for each supported operating system in [1]. Additionally, a comprehensive guide on downloading StaTDS is provided. Git can be easily installed on widely used operating systems such as Windows, Mac, and Linux. It is worth noting that Git comes pre-installed on the majority of Mac and Linux machines by default.
```
 $ git clone https//github.com/kdis-lab/StaTDS 
```

```
    $ cd StaTDS
    $ python -m pip install --upgrade pip # To update pip
    $ python -m pip install --upgrade build # To update build
    $ python -m build 
    $ pip install dist/statds-1.0-py3-none-any.whl
```
### Using pip

Ensure that Python and pip are correctly installed on your operating system before proceeding. Once you have completed this step, utilize the following commands for library installation according to your preferred configuration:

- If you only want to use the statistical tests:
    ```shell
    $ pip install statds
    ```
- If you also want to generate PDFs:
    ```shell
    $ pip install statds[pdf]
    ```
- If you want all the features:
    ```shell
    $ pip install statds[full-app]
    ```

## Quick start

- If you have questions, please ask them in GitHub Discussions.
- If you want to report a bug, please open an [issue on the GitHub repository](https://github.com/kdis-lab/StaTDS/issues).
- If you want to see StaTDS in action, please click on the link below and navigate to the notebooks/ folder to open a collection of interactive Jupyter notebooks.

### Using StaTDS Library - API

#### Normality tests: Shapiro Test

```python
from statds.normality import shapiro_wilk_normality
dataset = pd.read_csv("dataset.csv")
alpha = 0.05
columns = list(dataset.columns)
results = []

for i in range(1, len(columns)): 
    results.append(shapiro_wilk_normality(dataset[columns[i]].to_numpy(), alpha))

statistic_list, p_value_list, cv_value_list, hypothesis_list = zip(*results)

results_test = pd.DataFrame({"Algorithm": columns[1:], "Statistic": statistic_list, "p-value": p_value_list, "Results": hypothesis_list})
print(results_test)
```

#### Homoscedasticy tests: Levene
```python
from statds.homoscedasticity import levene_test
dataset = pd.read_csv("dataset.csv")
alpha = 0.05
columns = list(dataset.columns)
statistic, p_value, rejected_value, hypothesis = levene_test(dataset, alpha, center='mean')
print(hypothesis)
print(f"Statistic {statistic}, Rejected Value {rejected_value}")
```


#### Parametrics tests: T-test
```python
from statds.parametrics import t_test_paired
dataset = pd.read_csv("dataset.csv")
alpha = 0.05
columns = list(dataset.columns)
selected_columns = [columns[1], columns[2]]
statistic, rejected_value, p_value, hypothesis = t_test_paired(dataset[selected_columns], alpha)
print(hypothesis)
print(f"Statistic {statistic}, Rejected Value {rejected_value}, p-value {p_value}")
```

#### Parametrics tests: ANOVA
```python
from statds.parametrics import anova_test
dataset = pd.read_csv("dataset.csv")
alpha = 0.05
columns = list(dataset.columns)
statistic, p_value, rejected_value, hypothesis = anova_test(dataset, alpha)
print(hypothesis)
print(f"Statistic {statistic}, Rejected Value {rejected_value}, p-value {p_value}")
```

#### Non-parametrics tests: Wilcoxon
```python
from statds.no_parametrics import wilconxon
dataset = pd.read_csv("dataset.csv")
alpha = 0.05
columns = list(dataset.columns)
selected_columns = [columns[1], columns[2]]
statistic, p_value, rejected_value, hypothesis = wilconxon(dataset[selected_columns], alpha)
print(hypothesis)
print(f"Statistic {statistic}, Rejected Value {rejected_value}, p-value {p_value}")
```

#### Non-parametrics tests: Friedman Test

```python
import pandas as pd
from statds.no_parametrics import friedman

dataset = pd.read_csv("dataset.csv")
alpha = 0.05
columns = list(dataset.columns)
rankings, statistic, p_value, critical_value, hypothesis = friedman(dataset, alpha, criterion=False)
print(hypothesis)
print(ff"Statistic {statistic}, Rejected Value {rejected_value}, p-value {p_value}")
print(rankings)
```

#### Post-hoc tests: Bonferroni

```python
from statds.no_parametrics import friedman, bonferroni
dataset = pd.read_csv("dataset.csv")
alpha = 0.05
columns = list(dataset.columns)
rankings, statistic, p_value, critical_value, hypothesis = friedman(dataset, alpha, criterion=False)
print(hypothesis)
print(f"Statistic {statistic}, Rejected Value {rejected_value}, p-value {p_value}")
print(rankings)
num_cases = dataset.shape[0]
results, figure = bonferroni(rankings, num_cases, alpha, control = None, type_rank = "Friedman")
print(results)
figure.show()
```

#### Post-hoc tests: Nemenyi

```python
from statds.no_parametrics import friedman, nemenyi
dataset = pd.read_csv("dataset.csv")
alpha = 0.05
columns = list(dataset.columns)
rankings, statistic, p_value, critical_value, hypothesis = friedman(dataset, alpha, criterion=False)
print(hypothesis)
print(f"Statistic {statistic}, Rejected Value {rejected_value}, p-value {p_value}")
print(rankings)
num_cases = dataset.shape[0]
ranks_values, critical_distance_nemenyi, figure = nemenyi(rankings, num_cases, alpha)
print(ranks_values)
print(critical_distance_nemenyi)
figure.show()
```


### Using StaTDS Web Client

#### Local with Python

You only need create a python script with next code:

```python
from statds import app

app.start_app(port=8050)
```

Now, you can access to the interface with your Web navigator through the following url: http://localhost:8050

#### Local Using Docker

Firstly, to begin with, it is essential to download the repository from GitHub to obtain the Dockerfile. Before this step, ensure that Docker is installed on your computer [2]. With Docker ready to use, you can build the application's image by executing the following command:

```shell
docker build -t name-lib ./
```

After the image has been successfully created, the next step is to instantiate a container using that image.
 
```shell
docker run -p 8050:8050 --name container name-lib
```

Now, you can access to the interface with your Web navigator through the following url: http://localhost:8050


## References
[1] 1.5 getting started - installing git. Git. (n.d.). https://git-scm.com/book/en/v2/Getting-Started-Installing-Git 
[2] Get Docker — Docker Docs. Docker Inc. 2023. url: https://docs.docker.com/get-docker

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kdis-lab/StaTDS",
    "name": "statds",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "Test Statistical, Parametrics Tests, No Parametrics Tests, Comparare Algorithms Results, Post-hoc Tests",
    "author": "Christian Luna Escudero, Antonio R. Moya Mart\u00edn-Casta\u00f1o, Jos\u00e9 Mar\u00eda Luna Ariza, Sebasti\u00e1n Ventura Soto",
    "author_email": "i82luesc@uco.es, sventura@uco.es",
    "download_url": "https://files.pythonhosted.org/packages/6d/c1/24434cf7e1d175f00e6a629557c887181731844f9aa751734b9c15ee51cc/statds-1.1.5.tar.gz",
    "platform": null,
    "description": "# ![https://github.com/kdis-lab/StaTDS](https://raw.githubusercontent.com/kdis-lab/StaTDS/master/assets/statds.png) Hi, StaTDS is a library for statistical testing and comparison of algorithm results \ud83d\udc4b\n## Statistical Tests for Data Science (StaTDS)\n\nStaTDS is a library for mathematicians, scientists, and engineers. It includes various tools to facilitate statistical analysis given a set of data samples. Within this library, you will find a wide range of statistical tests to streamline the process when conducting comparative or sample studies.\n\n![https://github.com/kdis-lab/StaTDS](https://raw.githubusercontent.com/kdis-lab/StaTDS/master/assets/banner-lib.png)\n\n[![YouTube Channel Subscribers](https://img.shields.io/youtube/channel/subscribers/UCRuhSEuWAKQuCLQmoFim5Hw)](https://www.youtube.com/@StaTDS?sub_confirmation=1) ![GitHub Followers](https://img.shields.io/github/followers/kdis-lab?style=social) ![GitHub Followers](https://img.shields.io/github/stars/kdis-lab/StaTDS?style=social)  ![Pypi download](https://img.shields.io/pypi/dm/statds)\n\n### Available statistical test\n\n#### **Normality**\n\n| Name                        | Function                              |\n|-----------------------------|---------------------------------------|\n| Shapiro-Wilk                | normality.shapiro_wilk_normality      |\n| D'Agostino-Pearson          | normality.d_agostino_pearson          |\n| Kolmogorov-Smirnov          | normality.kolmogorov_smirnov          |\n\n\n#### **Homoscedasticity**\n\n| Name                        | Function                              |\n|-----------------------------|---------------------------------------|\n| Levene                      | homoscedasticity.levene               |\n| Bartlett                    | homoscedasticity.bartlett             |\n\n\n#### **Parametrics**\n\n| Name                        | Function                              | Type Comparisons |\n|-----------------------------|---------------------------------------|------------------|\n| T Test paired               | parametrics.t_test_paired             | Paired           |\n| T Test unpaired             | parametrics.t_test_unpaired           | Paired           |\n| ANOVA between cases         | parametrics.anova_cases               | Multiple         |\n| ANOVA within cases          | parametrics.anova_within_cases        | Multiple         |\n\n#### **Non Parametrics**\n\n| Name                        | Function                              | Type Comparisons |\n|-----------------------------|---------------------------------------|------------------|\n| Wilcoxon                    | no_parametrics.wilconxon              | Paired           |\n| Binomial Sign               | no_parametrics.binomial               | Paired           |\n| Mann-Whitney U              | no_parametrics.mannwhitneyu           | Paired           |\n| Friedman                    | no_parametrics.friedman               | Multiple         |\n| Friedman + Iman-Davenport   | no_parametrics.iman_davenport         | Multiple         |\n| Friedman Aligned Ranks      | no_parametrics.friedman_aligned_ranks | Multiple         |\n| Quade                       | no_parametrics.quade                  | Multiple         |\n| Kruskal-Wallis              | no_parametrics.kruskal_wallis         | Multiple         |\n\n\n##### **Post-hoc**\n\n| Name                        | Function                              |\n|-----------------------------|---------------------------------------|\n| Nemenyi                     | no_parametrics.nemenyi                |\n| Bonferroni                  | no_parametrics.bonferroni             |\n| Li                          | no_parametrics.li                     |\n| Holm                        | no_parametrics.holm                   |\n| Holland                     | no_parametrics.holland                |\n| Finner                      | no_parametrics.finner                 |\n| Hochberg                    | no_parametrics.hochberg               |\n| Hommel                      | no_parametrics.hommel                 |\n| Rom                         | no_parametrics.rom                    |\n| Shaffer                     | no_parametrics.shaffer                |\n\n## Developed in:\n![Python](https://img.shields.io/badge/Python-yellow?style=for-the-badge&logo=python&logoColor=white&labelColor=101010)\n\n## Authors\n\n- [@ChrisLe7](https://www.github.com/ChrisLe7)\n- [@anmoya2](https://github.com/anmoya2)\n- [@jmluna](https://github.com/jmluna)\n- [@sebastianventura](https://github.com/sebastianventura)\n\n\n## Documentaci\u00f3n\nYou can find all documentation in [Documentation Folder](https://github.com/kdis-lab/StaTDS), [Web Docs](https://github.com/kdis-lab/StaTDS) or [Youtube Channel](https://www.youtube.com/@StaTDS).\n\n\n## Installation\n\nStaTDS could be downloaded using two different ways: using pip or git as command line or docker container. \n\n### Using Git repository\nThe installation process for Git is detailed for each supported operating system in [1]. Additionally, a comprehensive guide on downloading StaTDS is provided. Git can be easily installed on widely used operating systems such as Windows, Mac, and Linux. It is worth noting that Git comes pre-installed on the majority of Mac and Linux machines by default.\n```\n $ git clone https//github.com/kdis-lab/StaTDS \n```\n\n```\n    $ cd StaTDS\n    $ python -m pip install --upgrade pip # To update pip\n    $ python -m pip install --upgrade build # To update build\n    $ python -m build \n    $ pip install dist/statds-1.0-py3-none-any.whl\n```\n### Using pip\n\nEnsure that Python and pip are correctly installed on your operating system before proceeding. Once you have completed this step, utilize the following commands for library installation according to your preferred configuration:\n\n- If you only want to use the statistical tests:\n    ```shell\n    $ pip install statds\n    ```\n- If you also want to generate PDFs:\n    ```shell\n    $ pip install statds[pdf]\n    ```\n- If you want all the features:\n    ```shell\n    $ pip install statds[full-app]\n    ```\n\n## Quick start\n\n- If you have questions, please ask them in GitHub Discussions.\n- If you want to report a bug, please open an [issue on the GitHub repository](https://github.com/kdis-lab/StaTDS/issues).\n- If you want to see StaTDS in action, please click on the link below and navigate to the notebooks/ folder to open a collection of interactive Jupyter notebooks.\n\n### Using StaTDS Library - API\n\n#### Normality tests: Shapiro Test\n\n```python\nfrom statds.normality import shapiro_wilk_normality\ndataset = pd.read_csv(\"dataset.csv\")\nalpha = 0.05\ncolumns = list(dataset.columns)\nresults = []\n\nfor i in range(1, len(columns)): \n    results.append(shapiro_wilk_normality(dataset[columns[i]].to_numpy(), alpha))\n\nstatistic_list, p_value_list, cv_value_list, hypothesis_list = zip(*results)\n\nresults_test = pd.DataFrame({\"Algorithm\": columns[1:], \"Statistic\": statistic_list, \"p-value\": p_value_list, \"Results\": hypothesis_list})\nprint(results_test)\n```\n\n#### Homoscedasticy tests: Levene\n```python\nfrom statds.homoscedasticity import levene_test\ndataset = pd.read_csv(\"dataset.csv\")\nalpha = 0.05\ncolumns = list(dataset.columns)\nstatistic, p_value, rejected_value, hypothesis = levene_test(dataset, alpha, center='mean')\nprint(hypothesis)\nprint(f\"Statistic {statistic}, Rejected Value {rejected_value}\")\n```\n\n\n#### Parametrics tests: T-test\n```python\nfrom statds.parametrics import t_test_paired\ndataset = pd.read_csv(\"dataset.csv\")\nalpha = 0.05\ncolumns = list(dataset.columns)\nselected_columns = [columns[1], columns[2]]\nstatistic, rejected_value, p_value, hypothesis = t_test_paired(dataset[selected_columns], alpha)\nprint(hypothesis)\nprint(f\"Statistic {statistic}, Rejected Value {rejected_value}, p-value {p_value}\")\n```\n\n#### Parametrics tests: ANOVA\n```python\nfrom statds.parametrics import anova_test\ndataset = pd.read_csv(\"dataset.csv\")\nalpha = 0.05\ncolumns = list(dataset.columns)\nstatistic, p_value, rejected_value, hypothesis = anova_test(dataset, alpha)\nprint(hypothesis)\nprint(f\"Statistic {statistic}, Rejected Value {rejected_value}, p-value {p_value}\")\n```\n\n#### Non-parametrics tests: Wilcoxon\n```python\nfrom statds.no_parametrics import wilconxon\ndataset = pd.read_csv(\"dataset.csv\")\nalpha = 0.05\ncolumns = list(dataset.columns)\nselected_columns = [columns[1], columns[2]]\nstatistic, p_value, rejected_value, hypothesis = wilconxon(dataset[selected_columns], alpha)\nprint(hypothesis)\nprint(f\"Statistic {statistic}, Rejected Value {rejected_value}, p-value {p_value}\")\n```\n\n#### Non-parametrics tests: Friedman Test\n\n```python\nimport pandas as pd\nfrom statds.no_parametrics import friedman\n\ndataset = pd.read_csv(\"dataset.csv\")\nalpha = 0.05\ncolumns = list(dataset.columns)\nrankings, statistic, p_value, critical_value, hypothesis = friedman(dataset, alpha, criterion=False)\nprint(hypothesis)\nprint(ff\"Statistic {statistic}, Rejected Value {rejected_value}, p-value {p_value}\")\nprint(rankings)\n```\n\n#### Post-hoc tests: Bonferroni\n\n```python\nfrom statds.no_parametrics import friedman, bonferroni\ndataset = pd.read_csv(\"dataset.csv\")\nalpha = 0.05\ncolumns = list(dataset.columns)\nrankings, statistic, p_value, critical_value, hypothesis = friedman(dataset, alpha, criterion=False)\nprint(hypothesis)\nprint(f\"Statistic {statistic}, Rejected Value {rejected_value}, p-value {p_value}\")\nprint(rankings)\nnum_cases = dataset.shape[0]\nresults, figure = bonferroni(rankings, num_cases, alpha, control = None, type_rank = \"Friedman\")\nprint(results)\nfigure.show()\n```\n\n#### Post-hoc tests: Nemenyi\n\n```python\nfrom statds.no_parametrics import friedman, nemenyi\ndataset = pd.read_csv(\"dataset.csv\")\nalpha = 0.05\ncolumns = list(dataset.columns)\nrankings, statistic, p_value, critical_value, hypothesis = friedman(dataset, alpha, criterion=False)\nprint(hypothesis)\nprint(f\"Statistic {statistic}, Rejected Value {rejected_value}, p-value {p_value}\")\nprint(rankings)\nnum_cases = dataset.shape[0]\nranks_values, critical_distance_nemenyi, figure = nemenyi(rankings, num_cases, alpha)\nprint(ranks_values)\nprint(critical_distance_nemenyi)\nfigure.show()\n```\n\n\n### Using StaTDS Web Client\n\n#### Local with Python\n\nYou only need create a python script with next code:\n\n```python\nfrom statds import app\n\napp.start_app(port=8050)\n```\n\nNow, you can access to the interface with your Web navigator through the following url: http://localhost:8050\n\n#### Local Using Docker\n\nFirstly, to begin with, it is essential to download the repository from GitHub to obtain the Dockerfile. Before this step, ensure that Docker is installed on your computer [2]. With Docker ready to use, you can build the application's image by executing the following command:\n\n```shell\ndocker build -t name-lib ./\n```\n\nAfter the image has been successfully created, the next step is to instantiate a container using that image.\n \n```shell\ndocker run -p 8050:8050 --name container name-lib\n```\n\nNow, you can access to the interface with your Web navigator through the following url: http://localhost:8050\n\n\n## References\n[1] 1.5 getting started - installing git. Git. (n.d.). https://git-scm.com/book/en/v2/Getting-Started-Installing-Git \n[2] Get Docker \u2014 Docker Docs. Docker Inc. 2023. url: https://docs.docker.com/get-docker\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Library for statistical testing and comparison of algorithm results",
    "version": "1.1.5",
    "project_urls": {
        "Homepage": "https://github.com/kdis-lab/StaTDS"
    },
    "split_keywords": [
        "test statistical",
        " parametrics tests",
        " no parametrics tests",
        " comparare algorithms results",
        " post-hoc tests"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "82cee3dfd86366010efbbd32405994bf64a6e655b8ec704cb1d3835b7973d24f",
                "md5": "b2776a5d3178a18c8de743b9ad12e7bd",
                "sha256": "2aaa1f43b27eb0c8e2c4bd4cc31b5e0f7cec9e34ebc310a4dcbef43be2b40f52"
            },
            "downloads": -1,
            "filename": "statds-1.1.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b2776a5d3178a18c8de743b9ad12e7bd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 2231525,
            "upload_time": "2024-03-30T07:27:27",
            "upload_time_iso_8601": "2024-03-30T07:27:27.548002Z",
            "url": "https://files.pythonhosted.org/packages/82/ce/e3dfd86366010efbbd32405994bf64a6e655b8ec704cb1d3835b7973d24f/statds-1.1.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6dc124434cf7e1d175f00e6a629557c887181731844f9aa751734b9c15ee51cc",
                "md5": "97bf1ca7feca6f8504898f8595952658",
                "sha256": "9f9d2ae5de4c99b786c22fac2acbc4d453059ef1b2ad3d5ea20fecdd6d68c91c"
            },
            "downloads": -1,
            "filename": "statds-1.1.5.tar.gz",
            "has_sig": false,
            "md5_digest": "97bf1ca7feca6f8504898f8595952658",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2232722,
            "upload_time": "2024-03-30T07:27:31",
            "upload_time_iso_8601": "2024-03-30T07:27:31.566044Z",
            "url": "https://files.pythonhosted.org/packages/6d/c1/24434cf7e1d175f00e6a629557c887181731844f9aa751734b9c15ee51cc/statds-1.1.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-30 07:27:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kdis-lab",
    "github_project": "StaTDS",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "statds"
}
        
Elapsed time: 0.29557s