stockpyl


Namestockpyl JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/LarrySnyder/stockpyl
SummaryA Python package for inventory optimization and simulation
upload_time2024-11-01 17:48:49
maintainerNone
docs_urlNone
authorLarry Snyder
requires_pythonNone
licenseGNU General Public License v3 (GPLv3)
keywords inventory optimization
VCS
bugtrack_url
requirements build jsonpickle matplotlib networkx numpy scipy setuptools sphinx sphinx_rtd_theme sphinx_toolbox tabulate tqdm
Travis-CI No Travis.
coveralls test coverage
            Stockpyl
========

![PyPI](https://img.shields.io/pypi/v/stockpyl)
[![Documentation Status](https://readthedocs.org/projects/stockpyl/badge/?version=latest)](https://stockpyl.readthedocs.io/en/latest/?badge=latest)
![Coverage](https://raw.githubusercontent.com/LarrySnyder/stockpyl/master/coverage_badge.svg)
![GitHub](https://img.shields.io/github/license/LarrySnyder/stockpyl)
![GitHub issues](https://img.shields.io/github/issues/LarrySnyder/stockpyl)
![Twitter Follow](https://img.shields.io/twitter/follow/LarrySnyder610?style=flat)

Stockpyl is a Python package for inventory optimization. It implements
classical single-node inventory models like the economic order quantity (EOQ), newsvendor,
and Wagner-Whitin problems. It also contains algorithms for multi-echelon inventory optimization
(MEIO) under both stochastic-service model (SSM) and guaranteed-service model (GSM) assumptions. 

Most of the models and algorithms implemented in Stockpyl are discussed in the textbook
*Fundamentals of Supply Chain Theory* (*FoSCT*) by Snyder and Shen, Wiley, 2019, 2nd ed. Most of them
are much older; see *FoSCT* for references to original sources. 

For a tutorial, see Snyder, L. V., "[Stockpyl: A Python Package for Inventory Optimization and Simulation](https://pubsonline.informs.org/doi/10.1287/educ.2023.0256)," in: Bish, E. K. and H. Balasubramanian, INFORMS TutORials in Operations Research, 156–197, 2023. The associated Jupyter notebooks are at [`notebooks/`](https://github.com/LarrySnyder/stockpyl/blob/c41103ca2055138f8f9844d29b3ab8ac67c847d5/notebooks).

For lots of details, [read the docs](http://stockpyl.readthedocs.io/).

Some Examples
-------------

Solve the newsvendor problem with a holding (overage) cost of 2, a stockout (underage) cost of 18, and 
demands that are normally distributed with a mean of 120 and a standard deviation of 10:

```python
>>> from stockpyl.newsvendor import newsvendor_normal
>>> S, cost = newsvendor_normal(holding_cost=2, stockout_cost=18, demand_mean=120, demand_sd=10)
>>> S
132.815515655446
>>> cost
35.09966638649737
```

Use Chen and Zheng's (1994) algorithm (based on Clark and Scarf (1960)) to optimize a 3-node serial system under
the stochastic-service model (SSM):

```python
>>> from stockpyl.ssm_serial import optimize_base_stock_levels
>>> S_star, C_star = optimize_base_stock_levels(
...     num_nodes=3,
...     echelon_holding_cost=[4, 3, 1],
...     lead_time=[1, 1, 2],
...     stockout_cost=40,
...     demand_mean=10,
...     demand_standard_deviation=2
... )
>>> S_star
{1: 12.764978727246302, 2: 23.49686681508743, 3: 46.28013742779933}
>>> C_star
86.02533221942987
```

Simulate the same system using the optimal base-stock levels:



Optimize committed service times (CSTs) for a tree network under the guaranteed-service model (GSM) 
using Graves and Willems' (2000) dynamic programming algorithm:

```python
>>> from stockpyl.gsm_tree import optimize_committed_service_times
>>> from stockpyl.instances import load_instance
>>> # Load a named instance, Example 6.5 from FoSCT.
>>> tree = load_instance("example_6_5")
>>> opt_cst, opt_cost = optimize_committed_service_times(tree)
>>> opt_cst
{1: 0, 3: 0, 2: 0, 4: 1}
>>> opt_cost
8.277916867529369
```



Resources
---------

* [PyPI](https://pypi.org/project/stockpyl/)
* [Documentation](http://stockpyl.readthedocs.io/)
* [Issue tracking](https://github.com/LarrySnyder/stockpyl/issues)

Feedback
--------

If you have feedback or encounter problems, please report them on the Stockpyl GitHub
[Issues Page](https://github.com/LarrySnyder/stockpyl/issues). (If you are not comfortable
using GitHub for this purpose, feel free to e-mail me. My contact info is on [my webpage](https://coral.ise.lehigh.edu/larry/).)

License
-------

Stockpyl is open-source and released under the [GPLv3 License](https://choosealicense.com/licenses/gpl-3.0/).

Citation
--------

If you'd like to cite the Stockpyl package, you can use the following BibTeX entry:

```bibtex
@misc{stockpyl,
    title={Stockpyl},
    author={Snyder, Lawrence V.},
    year={2023},
    url={https://github.com/LarrySnyder/stockpyl}
}
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/LarrySnyder/stockpyl",
    "name": "stockpyl",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "inventory, optimization",
    "author": "Larry Snyder",
    "author_email": "larry.snyder@lehigh.edu",
    "download_url": "https://files.pythonhosted.org/packages/3d/e6/c257964cd944f411781e59b147d2189e3b6eeba7a6bd8a15fda52bada87b/stockpyl-1.0.1.tar.gz",
    "platform": null,
    "description": "Stockpyl\n========\n\n![PyPI](https://img.shields.io/pypi/v/stockpyl)\n[![Documentation Status](https://readthedocs.org/projects/stockpyl/badge/?version=latest)](https://stockpyl.readthedocs.io/en/latest/?badge=latest)\n![Coverage](https://raw.githubusercontent.com/LarrySnyder/stockpyl/master/coverage_badge.svg)\n![GitHub](https://img.shields.io/github/license/LarrySnyder/stockpyl)\n![GitHub issues](https://img.shields.io/github/issues/LarrySnyder/stockpyl)\n![Twitter Follow](https://img.shields.io/twitter/follow/LarrySnyder610?style=flat)\n\nStockpyl is a Python package for inventory optimization. It implements\nclassical single-node inventory models like the economic order quantity (EOQ), newsvendor,\nand Wagner-Whitin problems. It also contains algorithms for multi-echelon inventory optimization\n(MEIO) under both stochastic-service model (SSM) and guaranteed-service model (GSM) assumptions. \n\nMost of the models and algorithms implemented in Stockpyl are discussed in the textbook\n*Fundamentals of Supply Chain Theory* (*FoSCT*) by Snyder and Shen, Wiley, 2019, 2nd ed. Most of them\nare much older; see *FoSCT* for references to original sources. \n\nFor a tutorial, see Snyder, L. V., \"[Stockpyl: A Python Package for Inventory Optimization and Simulation](https://pubsonline.informs.org/doi/10.1287/educ.2023.0256),\" in: Bish, E. K. and H. Balasubramanian, INFORMS TutORials in Operations Research, 156\u2013197, 2023. The associated Jupyter notebooks are at [`notebooks/`](https://github.com/LarrySnyder/stockpyl/blob/c41103ca2055138f8f9844d29b3ab8ac67c847d5/notebooks).\n\nFor lots of details, [read the docs](http://stockpyl.readthedocs.io/).\n\nSome Examples\n-------------\n\nSolve the newsvendor problem with a holding (overage) cost of 2, a stockout (underage) cost of 18, and \ndemands that are normally distributed with a mean of 120 and a standard deviation of 10:\n\n```python\n>>> from stockpyl.newsvendor import newsvendor_normal\n>>> S, cost = newsvendor_normal(holding_cost=2, stockout_cost=18, demand_mean=120, demand_sd=10)\n>>> S\n132.815515655446\n>>> cost\n35.09966638649737\n```\n\nUse Chen and Zheng's (1994) algorithm (based on Clark and Scarf (1960)) to optimize a 3-node serial system under\nthe stochastic-service model (SSM):\n\n```python\n>>> from stockpyl.ssm_serial import optimize_base_stock_levels\n>>> S_star, C_star = optimize_base_stock_levels(\n...     num_nodes=3,\n...     echelon_holding_cost=[4, 3, 1],\n...     lead_time=[1, 1, 2],\n...     stockout_cost=40,\n...     demand_mean=10,\n...     demand_standard_deviation=2\n... )\n>>> S_star\n{1: 12.764978727246302, 2: 23.49686681508743, 3: 46.28013742779933}\n>>> C_star\n86.02533221942987\n```\n\nSimulate the same system using the optimal base-stock levels:\n\n\n\nOptimize committed service times (CSTs) for a tree network under the guaranteed-service model (GSM) \nusing Graves and Willems' (2000) dynamic programming algorithm:\n\n```python\n>>> from stockpyl.gsm_tree import optimize_committed_service_times\n>>> from stockpyl.instances import load_instance\n>>> # Load a named instance, Example 6.5 from FoSCT.\n>>> tree = load_instance(\"example_6_5\")\n>>> opt_cst, opt_cost = optimize_committed_service_times(tree)\n>>> opt_cst\n{1: 0, 3: 0, 2: 0, 4: 1}\n>>> opt_cost\n8.277916867529369\n```\n\n\n\nResources\n---------\n\n* [PyPI](https://pypi.org/project/stockpyl/)\n* [Documentation](http://stockpyl.readthedocs.io/)\n* [Issue tracking](https://github.com/LarrySnyder/stockpyl/issues)\n\nFeedback\n--------\n\nIf you have feedback or encounter problems, please report them on the Stockpyl GitHub\n[Issues Page](https://github.com/LarrySnyder/stockpyl/issues). (If you are not comfortable\nusing GitHub for this purpose, feel free to e-mail me. My contact info is on [my webpage](https://coral.ise.lehigh.edu/larry/).)\n\nLicense\n-------\n\nStockpyl is open-source and released under the [GPLv3 License](https://choosealicense.com/licenses/gpl-3.0/).\n\nCitation\n--------\n\nIf you'd like to cite the Stockpyl package, you can use the following BibTeX entry:\n\n```bibtex\n@misc{stockpyl,\n    title={Stockpyl},\n    author={Snyder, Lawrence V.},\n    year={2023},\n    url={https://github.com/LarrySnyder/stockpyl}\n}\n```\n\n",
    "bugtrack_url": null,
    "license": "GNU General Public License v3 (GPLv3)",
    "summary": "A Python package for inventory optimization and simulation",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/LarrySnyder/stockpyl"
    },
    "split_keywords": [
        "inventory",
        " optimization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "44c55dd264599cdacd60d44c631000ecded91f42d45e8ca42cd39b76c328562a",
                "md5": "3b56f275529aebb856f7abfcb3d03512",
                "sha256": "293b95f0a5c992d1a7f0007e7f2948042a3a409d9b5b935a86065dca7f58461c"
            },
            "downloads": -1,
            "filename": "stockpyl-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3b56f275529aebb856f7abfcb3d03512",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 188545,
            "upload_time": "2024-11-01T17:48:47",
            "upload_time_iso_8601": "2024-11-01T17:48:47.838423Z",
            "url": "https://files.pythonhosted.org/packages/44/c5/5dd264599cdacd60d44c631000ecded91f42d45e8ca42cd39b76c328562a/stockpyl-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3de6c257964cd944f411781e59b147d2189e3b6eeba7a6bd8a15fda52bada87b",
                "md5": "cd8290878f1a6a8b6452bd3f86e417c7",
                "sha256": "74f35d328a5deb55abd756ba0e97ac11e117809037bc7a87c5dd1aa3e9aba8e0"
            },
            "downloads": -1,
            "filename": "stockpyl-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "cd8290878f1a6a8b6452bd3f86e417c7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 261411,
            "upload_time": "2024-11-01T17:48:49",
            "upload_time_iso_8601": "2024-11-01T17:48:49.537581Z",
            "url": "https://files.pythonhosted.org/packages/3d/e6/c257964cd944f411781e59b147d2189e3b6eeba7a6bd8a15fda52bada87b/stockpyl-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-01 17:48:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "LarrySnyder",
    "github_project": "stockpyl",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": false,
    "requirements": [
        {
            "name": "build",
            "specs": [
                [
                    "==",
                    "0.0.2"
                ]
            ]
        },
        {
            "name": "jsonpickle",
            "specs": [
                [
                    "==",
                    "1.5.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    "==",
                    "2.0"
                ]
            ]
        },
        {
            "name": "networkx",
            "specs": [
                [
                    "==",
                    "2.0"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.23.5"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.10.0"
                ]
            ]
        },
        {
            "name": "setuptools",
            "specs": [
                [
                    "==",
                    "70.0"
                ]
            ]
        },
        {
            "name": "sphinx",
            "specs": [
                [
                    "==",
                    "4.5.0"
                ]
            ]
        },
        {
            "name": "sphinx_rtd_theme",
            "specs": [
                [
                    "==",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "sphinx_toolbox",
            "specs": [
                [
                    "==",
                    "3.1.2"
                ]
            ]
        },
        {
            "name": "tabulate",
            "specs": [
                [
                    "==",
                    "0.8.7"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    "==",
                    "4.1.0"
                ]
            ]
        }
    ],
    "lcname": "stockpyl"
}
        
Elapsed time: 0.69890s